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Abstract

We study non-uniform constraint satisfaction problems definable in monadic
Datalog stratified by the use of non-linearity. We show how such problems can
be described in terms of homomorphism dualities involving trees of bounded
pathwidth and in algebraic terms. For this, we introduce a new parameter
for trees that closely approximates pathwidth and can be characterised via a
hypergraph searching game.
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1. Introduction

The constraint satisfaction problem (CSP) provides a framework in which
it is possible to express, in a natural way, many combinatorial problems en-
countered in artificial intelligence and computer science. It is well known (see,
e.g., [11, 18]) that the CSP can be cast as the following fundamental problem:
given two finite relational structures A and B, is there a homomorphism from
A to B? The non-uniform CSP, when the structure B is fixed, and only A is
part of the input, is one the most studied forms of the CSP. The obtained prob-
lem is denoted by CSP(B). Examples of such problems include k-Sat, Graph

H-colouring, and Systems of Equations (e.g., linear equations).
The classification of relational structures B with respect to computational

(i.e., membership in a given complexity class) and descriptive (i.e., definability
in a given logic) complexity of CSP(B) has been a very active research direction
in the last decade (see, e.g., [11, 18, 27]). A variety of mathematical approaches
to study problems CSP(B) has been recently suggested. The most advanced
approaches use logic, combinatorics, universal algebra, and their combinations
(see [8, 9, 11, 25]). The most famous open problem about the computational
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complexity of CSP(B) is the Dichotomy (aka Feder-Vardi) Conjecture [18] which
states that each problem CSP(B) is either tractable (i.e., in PTIME) or NP-
complete. The precise boundary between the two cases was conjectured in [7]
in algebraic terms, and this refined conjecture was proved in several important
special cases (e.g., [5, 6]) via algebraic tools. The logic programming language
Datalog and its fragments are arguably some of the most important tools for
studying CSP(B). In fact, all problems CSP(B) that are known to be tractable
can be solved via algorithms based on definability in Datalog, or on the “few sub-
powers property” (see [9]), or on a combination of the two. A characterisation
of structures B with (the complement of) CSP(B) definable in Datalog was also
conjectured in [18], and then, in more algebraic terms in [30] (see also [9]); it be-
came known as the Bounded Width (aka Larose-Zádori) Conjecture and was the
most important open problem about the descriptive complexity of non-uniform
CSP until it was very recently solved (in positive) in [4], also via algebraic tools.

Classification of structures B with respect to definability of co-CSP(B) in
fragments of Datalog, such as linear [13] or symmetric [16] Datalog, now becomes
one of the most important problems in descriptive complexity of non-uniform
CSP, and the present paper contributes to this direction. Definability in linear
Datalog is also important for the classification of computational complexity
because, for every problem CSP(B) that is currently known to belong to NL,
the complement of CSP(B) can be defined in linear Datalog (see [8, 10, 13, 14]).
Moreover, in [27], it is suggested that the converse might also hold, and the
algebraic approach to the CSP is linked with definability in linear and symmetric
Datalog.

The definability of CSP(B) in Datalog and its fragments is very closely
related with homomorphism dualities (see survey [8]). Roughly, a structure B

has duality (of some type) if the non-existence of a homomorphism from a given
structure A to B can always be explained by the existence of a simple enough
obstruction structure (i.e., one that homomorphically maps to A but not to
B). The types of dualities correspond to interpretations of the phrase “simple
enough”. For non-uniform CSP, definability in Datalog is equivalent to bounded
treewidth duality, while definability in linear Datalog is equivalent to bounded
pathwidth duality (see [8, 13]). On the algebraic side, some necessary [27] and
sufficient [10, 14] conditions for having bounded pathwidth duality are known
(see also [8]), but the gap between them is still huge.

Tree duality is the most well understood duality (see [8, 18]), it is equivalent
to definability in monadic Datalog, and also has a nice algebraic characterisa-
tion. In this paper, we consider the form of duality that corresponds to trees of
bounded pathwidth, extending results from [10]. We introduce a new structural
parameter for trees that closely approximates pathwidth and can be nicely char-
acterised via a hypergraph searching game in the spirit of [1, 3, 19, 20]. We use
the new parameter to show that structures that have obstruction sets consisting
of trees of bounded pathwidth can be equivalently described in terms of Datalog
and in terms of algebra (which is why we prefer it to pathwidth in our context).
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2. Preliminaries

2.1. Structures

A vocabulary is a finite set of relation symbols or predicates. In what follows,
τ always denotes a vocabulary. Every relation symbol R in τ has an arity
r = ρ(R) > 0 associated to it. We also say that R is an r-ary relation symbol.
A τ -structure A consists of a set A, called the universe of A, and a relation
RA ⊆ Ar for every relation symbol R ∈ τ where r is the arity of R. All
structures in this paper are assumed to be finite, i.e., structures with a finite
universe. Throughout the paper we use the same boldface and slanted capital
letters to denote a structure and its universe, respectively.

A τ -structure C is called a substructure of A if C ⊆ A and RC ⊆ RA for
all R ∈ τ . If, in addition, RC = RA ∩ Cρ(R) for every R ∈ τ then C is called a
substructure induced by C, and is also denoted by A[C].

A homomorphism from a τ -structure A to a τ -structure B is a mapping
h : A → B such that for every r-ary R ∈ τ and every (a1, . . . , ar) ∈ RA, we
have (h(a1), . . . , h(ar)) ∈ RB. We denote this by h : A → B. We also say
that A homomorphically maps to B (or A is homomorphic to B), and write
A → B if there is a homomorphism from A to B and A 6→ B if there is
no homomorphism. Also, if a1, . . . , ar ∈ A and b1, . . . , br ∈ B we will write
A, a1, . . . , ar → B, b1, . . . , br to indicate that there is a homomorphism h from
A to B such that h(ai) = bi for all i = 1, . . . , r.

Now CSP(B) can be defined to be the class of all structures A such that
A → B. The class of all structures A such that A 6→ B will be denoted by
co-CSP(B). A number of examples of combinatorial problems representable as
CSP(B) or co-CSP(B) for a suitable structure B can be found in [8, 11].

Let A be a τ -structure. The incidence multigraph of A is defined as the
bipartite multigraph with parts A and Block(A), where Block(A) consists of
all pairs (R, a) such that R ∈ τ and a ∈ RA, and with edges ea,i,Z joining a ∈ A
to Z = (R, (a1, . . . , ar)) ∈ Block(A) when ai = a. A structure A is said to be a
τ-tree (or simply a tree) if its incidence multigraph is a tree (in particular, it has
no multiple edges). For example, if τ is the signature of digraphs then τ -trees
are exactly the oriented trees, i.e., digraphs obtained from trees by orienting
each edge in some way.

A hypergraph H is a pair (V (H), E(H)) consisting of a finite nonempty
set V (H) of vertices or nodes and a set E(H) ⊆ P(V (H)) of hyperedges with
∪E(H) = V (H). A path on a hypergraph H from u to v is a sequence u =
w0, e1, w1, e2, . . . , ek, wk = v where e1, . . . , ek are distinct hyperedges, w0, . . . , wk

are distinct vertices, and {vi−1, vi} ⊆ ei for every 1 ≤ i ≤ k.
With this notion of path, the definitions of cycle, connectedness and con-

nected component can be transferred from graphs to hypergraphs in a natural
way. We say that a hypergraph H is a tree if it is connected and has no cycles.
With every structure A, one can associate a hypergraph H(A) whose nodes are
the elements of A and the hyperedges are sets of elements appearing in a tuple
in some relation in A. Note that H(A) is a tree whenever A is a τ -tree, but the
converse is not always true. In general, the shape of a structure can be much
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more complicated than that of its associated hypergraph. However, for trees,
the hypergraph gives a rather faithful representation. Indeed, if A is a tree and
m ≥ 2, then there is a complete correspondence between the set of hyperedges
of H(A) of cardinality m and the set of m-ary tuples in relations in A.

The Gaifman graph G(A) of a structure A is defined to have the same
universe (set of vertices) as A and the edges of G(A) are the pairs (a, a′) of
distinct elements such that a and a′ appear in the same tuple in some relation
in A. The pathwidth of a graph G = (V, E), denoted pw(G), is the minimum
number k such that there is a sequence X1, . . . , Xt of sets of vertices of G with
the following properties: (i)

⋃t

i=1 Xi = V , (ii) if e = (u, v) ∈ E then u, v ∈ Xi

for some i, (iii) if i < j < l then Xi∩Xl ⊆ Xj , and (iv) max {|Xi| : 1 ≤ i ≤ t} =
k+1. In this paper, we say that the pathwidth of a structure A, denoted pw(A),
is equal to pw(G(A)). A finer notion of pathwidth for structures can be found
in [8], but the concept of bounded pathwidth is the same.

2.2. Datalog

We now briefly describe the basics of Datalog (for more details, see, e.g., [24]).
Fix a vocabulary τ . A Datalog program is a finite set of rules of the form
t0 : − t1, . . . , tn where each ti is an atomic formula R(xi1 , . . . , xik

). Then t0 is
called the head of the rule, and the sequence t1, . . . , tn the body of the rule. The
intended meaning of such a rule is that the conjunction of the predicates in the
body implies the predicate in the head, with all variables not appearing in the
head existentially quantified. The predicates occurring in the heads of the rules
are not from τ and are called IDBs (from “intensional database predicates”),
while all other predicates come from τ and are called EDBs (from “extensional
database predicates”). One of the IDBs, which is usually 0-ary in our case,
is designated as the goal predicate of the program. Since the IDBs may occur
in the bodies of the rules, each Datalog program is a recursive specification of
the IDBs, with semantics obtained via least fixed-points of monotone operators.
The goal predicate is assumed to be initially set to false, and we say that a
Datalog program accepts a τ -structure A if its goal predicate evaluates to true

on A. In this case we also say that the program derives the goal predicate on A.
It is easy to see that the class of structures accepted by any Datalog program is
closed under homomorphism (i.e., if A → B and A is accepted then B is also
accepted).

A Datalog program is called linear if each of its rules has at most one oc-
currence of an IDB in the body, and it is called monadic if each IDB is at most
unary.

When using Datalog to study CSP(B), one usually speaks of the definability
of co-CSP(B) in Datalog or its fragments (because any class definable in Dat-
alog must be closed under extension). We now give two examples of Datalog
programs defining classes of the form co-CSP(B), more examples can be found
in [8, 13, 25].

Example 1. Let B3H be the structure with universe {0, 1}, one unary rela-
tion UB3H = {1} and two ternary relations PB3H = {0, 1}3 \ {(1, 1, 0)} and
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NB3H = {0, 1}3 \ {(1, 1, 1)}. It is easy to see that every Horn 3-CNF formula
ϕ with variables x1, . . . , xn can be represented as a structure Aϕ with universe
{x1, . . . , xn} and relations UAϕ , PAϕ , NAϕ where UAϕ is the set of all positive
unit clauses (in ϕ), PAϕ is the set of all clauses of the form (¬x ∨ ¬y ∨ z),
and NAϕ is the set of all clauses of the form (¬x ∨ ¬y ∨ ¬z). Clearly, we have
Aϕ → B3H if and only if ϕ is satisfiable. Hence Horn 3-Sat is precisely
CSP(B3H). It is well known that Horn 3-Sat can be solved by the unit prop-
agation algorithm which can be represented as the following Datalog program
(where G is the goal predicate).

T (X) : − U(X)
T (Z) : − P (X, Y, Z), T (X), T (Y )
G : − N(X, Y, Z), T (X), T (Y ), T (Z)

Example 2. Fix a number k ≥ 3, and let Bihs denote the Boolean structure
with three relations, unary UBihs = {0}, binary OBihs = {(0, 0), (0, 1), (1, 1)}
(the order relation), and k-ary WBihs = {0, 1}k \ {(0, . . . , 0)}. These relations
are basic implicative hitting-set bounded relations, as introduced in [12]. It can
be checked directly that the following program describes co-CSP(Bihs).

Z(X) : − U(X)
Z(X) : − O(X, Y ), Z(Y )
G : − W (X1, X2, . . . , Xk), Z(X1), Z(X2), . . . , Z(Xk)

2.3. Polymorphisms

Let f be an n-ary operation on B, and R a relation on B. We say that f
is a polymorphism of R if, for any tuples, ā1, . . . , ān ∈ R, the tuple obtained by
applying f componentwise to ā1, . . . , ān also belongs to R. In this case we also
say that R is invariant under f .

We say that f is a polymorphism of B if it is a polymorphism of each relation
in B. It is easy to check that the n-ary polymorphisms of B are precisely the
homomorphisms from the n-th direct power Bn to B. It is well known and easy
to verify that composition of polymorphisms of B is again a polymorphism of
B (see, e.g., [11]).

The notion of a polymorphism plays the key role in the algebraic approach
to the CSP. The polymorphisms of a structure are known to determine the
complexity of CSP(B) as well as definability of co-CSP(B) in Datalog and in
several fragments, including monadic Datalog and linear Datalog (see [8, 27]).
Many algebraic sufficient conditions for definability of co-CSP(B) in various
fragments of Datalog are known (see [8]).

Let us now define several types of operations that will be used in this pa-
per. An n-ary operation f is called idempotent if f(x, . . . , x) = x for all x
and totally symmetric if f(x1, . . . , xn) = f(y1, . . . , yn) whenever {x1, . . . , xn} =
{y1, . . . , yn}. An n-ary (n ≥ 3) operation is called an NU (near-unanimity)
operation if it satisfies the identities f(y, x, . . . , x, x) = f(x, y, . . . , x, x) = . . . =
f(x, x, . . . , x, y) = x. A ternary NU operation is called a majority operation.
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2.4. Dualities

A comprehensive treatment of dualities for the CSP can be found in the
survey [8].

Definition 3. A set O of τ-structures is called an obstruction set for B if, for
any τ-structure A, A → B if and only if A′ 6→ A for all A′ ∈ O.

If the set O can be chosen to consist of nicely behaved structures such as
trees, or structures of bounded pathwidth or of bounded treewidth, then B is
said to have tree (bounded pathwidth, bounded treewidth, respectively) duality.
A structure with a finite obstruction set is said to have finite duality. It is known
(see [8]) that a structure B has one of the following forms of duality: finite, tree,
bounded pathwidth, bounded treewidth if and only if co-CSP(B) is definable in
the following fragments of Datalog, respectively: recursion-free, monadic, linear,
full.

Structures with tree duality were characterised in several equivalent ways
in [18]. To state the result, we need the following construction: for a τ -structure
B, define a τ -structure U(B) (sometimes referred to as the power structure)
whose elements are the non-empty subsets of B, and, for each r-ary R ∈ τ ,
we have (A1, . . . , Ar) ∈ RU(B) if and only if there exists a relation R′ ⊆ RB

such that, for each j = 1, . . . , r, we have prj(R
′) = Aj , where prj(R

′) = {aj |
(a1, . . . , aj , . . . , ar) ∈ R′}.

Theorem 4. [18] Let B be a structure. The following conditions are equivalent:

1. B has tree duality;

2. co-CSP(B) is definable by a monadic Datalog program with at most one
EDB per rule;

3. U(B) admits a homomorphism to B;

4. for every n ≥ 1, B has an n-ary totally symmetric polymorphism.

3. A characterisation theorem

The main result of this paper is a characterisation of structures that have
an obstruction set consisting of trees of bounded pathwidth, in the spirit of
Theorem 4. Before stating the theorem, we will define, as in the four conditions
of Theorem 4, (i) some new structures that will be involved in obstruction sets,
(ii) a new class of Datalog programs, (iii) a new “power structure”, and (iv) new
operations for the algebraic characterisation.

3.1. Cattrees

A subhypergraph of H = (V (H), E(H)) is any hypergraph (V (H ′), E(H ′))
with E(H ′) ⊆ E(H). In graph theory, a caterpillar is a tree which becomes a
path after all its leaves are removed. We say that a hypergraph is a caterpillar if
it is a tree and its hyperedges can be ordered e1, . . . , en in such a way that two
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consecutive edges share (exactly) one element. A hyperedge e of a caterpillar is
an extreme if there exists such ordering with e = e1.

Let H be a hypergraph which is a tree and let E and T be connected sub-
hypergraphs of H (and hence trees) that have no hyperedge in common. We
say that T is cut off by E in H if T contains exactly one hyperedge eT with
elements of V (E) and is maximal with respect to that property. We shall call
the hyperedge eT the hyperedge connecting T to E.

Definition 5. Let H be a hypergraph which is a tree, let e be a hyperedge of H
and k ≥ 1. Then the pair (H, e) is a k-cattree if:

1. H is a caterpillar, and e is an extreme of H, or

2. k > 1 and there is subhypergraph E of H which is a caterpillar with
extreme e and, for every subtree T cut off by E, (T, eT ) is a (k − 1)-
cattree.

A tree H is a k-cattree if (H, e) is a k-cattree for some e ∈ E(H).
A structure T is a k-cattree if T is a tree and H(T) is a k-cattree.

Note that a 1-cattree is simply a caterpillar. An example of a 2-cattree
hypergraph is shown on Fig. 1.

2

T

T

T

E

e

e

e

e

2

1

3

3

1

Figure 1: An example of a 2-cattree.

The above definition is new, but it is very close (in the case of graphs) to the
definition of a k-caterpillar from [3] (the difference is that, in their definition,
E is a path rather than a caterpillar). In Section 5, we will show that the new
hypergraph parameter is natural by characterising it via a natural variation of
a hypergraph searching game, which is a result of independent interest.

The following result connects the cattree parameter and the pathwidth of a
tree.

Theorem 6. If A is a τ-tree, r is the maximum arity in τ , and k is the
minimum number such that A is a k-cattree, then 1

2 (k − 1) ≤ pw(A) + 1 ≤ rk.
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Theorem 6 will immediately follow from Proposition 30, Remark 34, Theo-
rem 40, and Corollary 43 that can be found in Section 5. More precisely, Corol-
lary 43 gives an inequality for certain hypergraph parameters, while the other
three statements connect these parameters with the numbers in Theorem 6.
Note that Theorem 6 implies that any class of τ -trees has bounded pathwidth
if and only if it consists of k-cattrees for some k. We say that a structure B has
k-cattree duality if it has an obstruction set consisting of k-cattrees.

3.2. Layered monadic Datalog

For brevity, we will call monadic Datalog programs with at most one EDB
per rule tree programs. For k ≥ 1, a k-layered tree program is a tree program P
in which the IDBs can be partitioned in k subsets, so that we speak of the level
of an IDB, such that in every rule of P the following holds:

• If i is the level of the IDB in the head of the rule then the body of the rule
can contain no IDB of level higher than i and at most one IDB of level i.

This means that, when applying a rule in the run of such a program, one can
assume that all, but possibly one, IDBs in its body are already fully evaluated
(i.e., will not change in this run). In a sense, this is a stratification of monadic
Datalog (with at most one EDB per rule) by the use of non-linearity, somewhat
akin to the standard stratification of Datalog(¬) by the use of negation [21].

Note that a k-layered tree program is in general not linear, but it is easy
to see that, for any such program, there exists a linear, though not necessarily
monadic, Datalog program that accepts precisely the same class of structures.
Roughly, this program can be obtained by forming non-unary predicates whose
co-ordinates correspond to the unary predicates of the original program, so that
multiple unary IDBs in a rule could be replaced by a single non-unary IDB.

Recall the CSPs and Datalog programs from Examples 1 and 2. The tree
program in Example 1 is not k-layered (for any k) because the IDB T appears
twice in the body of the middle rule and also in the head of the same rule, so
T cannot be assigned a level. In fact, co-CSP(B3H) cannot be defined by a k-
layered tree program because, as follows from [2], it cannot even be defined by a
linear Datalog program. The tree program in Example 2 is 2-layered, the IDB Z
has level 1, and the goal predicate G has level 2. Moreover, co-CSP(Bihs) cannot
be defined by a 1-layered tree program because Bihs is easily seen not to have a
majority polymorphism which is a necessary condition for such definability [10].

3.3. A new power structure

Let B be a τ -structure, let RB be a relation in B of arity, say r, and let
(S1, . . . , Sr) be an r-tuple of families of subsets of B and let (G1, . . . , Gr) be an
r-tuple of subsets of B. We say that (S1, . . . , Sr) is coherent with RB in ground
(G1, . . . , Gr) if, for all j, l = 1, . . . , r we have

1. prl(R
B ∩ (G1 × . . . × Gr)) ∈ Sl, and

2. prl(R
B ∩ (G1 × . . . × Gj−1 × S × Gj+1 × . . . × Gr)) ∈ Sl for any S ∈ Sj .
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For k ≥ 1, we construct a structure Ck(B) as follows.

• the elements of Ck(B) are the sequences S = (S[1], . . . , S[k]) of families of
non-empty subsets of B in which every “level” S[i] is closed under inverse
inclusion, i.e., if S ∈ S[i] and S ⊆ S′ then S′ ∈ S[i].

• for each r-ary R ∈ τ , we have (S1, . . . , Sr) ∈ RCk(B) iff, for all 1 ≤ i ≤ k,
(S1[i], . . . , Sr[i]) is coherent with RB in ground (

⋂
S1[i−1], . . . ,

⋂
Sr[i−1])

(assuming that Sj [0] = {B} for all j = 1, . . . , r).

3.4. Layered polymorphisms

Let us now generalise the notion of an m-ABS operation from [10]. We call
a operation f of arity k · m · n on B k-layered m-block symmetric if it satisfies
the following condition:

f(

S
(1)
1

︷ ︸︸ ︷

x
(1)
11 , . . . , x

(1)
1m, . . . ,

S(1)
n

︷ ︸︸ ︷

x
(1)
n1 , . . . , x(1)

nm, . . . ,

S
(k)
1

︷ ︸︸ ︷

x
(k)
11 , . . . , x

(k)
1m, . . . ,

S(k)
n

︷ ︸︸ ︷

x
(k)
n1 , . . . , x(k)

nm) =

= f(y
(1)
11 , . . . , y

(1)
1m

︸ ︷︷ ︸

T
(1)
1

, . . . , y
(1)
n1 , . . . , y(1)

nm
︸ ︷︷ ︸

T
(1)
n

, . . . , y
(k)
11 , . . . , y

(k)
1m

︸ ︷︷ ︸

T
(k)
1

, . . . , y
(k)
n1 , . . . , y(k)

nm
︸ ︷︷ ︸

T
(k)
n

)

whenever {S
(l)
1 , . . . , S

(l)
n } = {T

(l)
1 , . . . , T

(l)
n } for each “level” l where, for all i,

S
(l)
i = {x

(l)
i1 , . . . , x

(l)
im} and T

(l)
i = {y

(l)
i1 , . . . , y

(l)
im}.

Equivalently, the above condition can be stated as follows: the value

f(x
(1)
11 , . . . , x

(1)
1m, . . . , x

(1)
n1 , . . . , x(1)

nm, . . . , x
(k)
11 , . . . , x

(k)
1m, . . . , x

(k)
n1 , . . . , x(k)

nm)

depends only on the sequence S1, . . . , Si, . . . , Sk where Si = {S
(i)
1 , . . . , S

(i)
n }, and

S
(i)
j = {x

(i)
j1 , . . . , x

(i)
jm}, j = 1, . . . , n. Therefore, we will often denote this value

by f(S1, . . . , Si, . . . , Sk).
Let us call a sequence S1, . . . , Sk nested if either k = 1 or, for each 1 ≤ j < k,

every set in Sj+1 is a subset of every set in Sj . We say that a k-layered m-
block symmetric operation f is a k-layered m-ABS operation if the following
absorption property holds: for any 1 ≤ i ≤ k and for any nested sequence
S1, . . . , Sk we have

f(S1, . . . , Si, . . . , Sk) = f(S1, . . . , S
′
i, . . . , Sk)

where S′
i is any subset of Si obtained by removing any element (i.e., a subset of

B) in Si that entirely contains some other element in Si.
It is easy to check that 1-layered m-ABS operations are exactly the m-ABS

operations from [10].

Example 7. Let B = {0, 1}k. In this example we will think of elements of B
as k-columns of Boolean values. Consider the operation f on B such that
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f(x
(1)
11 , . . . , x

(1)
1m, . . . , x

(1)
n1 , . . . , x

(1)
nm, . . . , x

(k)
11 , . . . , x

(k)
1m, . . . , x

(k)
n1 , . . . , x

(k)
nm) =









(
∨n

i=1

∧m
j=1 x

(1)
ij [1]) ∧ (

∧n
i=1

∧m
j=1 x

(2)
ij [1]) ∧ . . . ∧ (

∧n
i=1

∧m
j=1 x

(k)
ij [1])

(
∨n

i=1

∧m

j=1 x
(2)
ij [2]) ∧ . . . ∧ (

∧n

i=1

∧m

j=1 x
(k)
ij [2])

...

(
∨n

i=1

∧m

j=1 x
(k)
ij [k])









where x
(w)
ij [l] denotes the l-th component of variable x

(w)
ij .

It can be directly verified that f is a k-layered m-ABS operation. Indeed,
since the operations

∨
and

∧
are totally symmetric, it is easy to see that, for

any fixed 1 ≤ l ≤ k, the overall effect of the variables of the form x
(l)
ij on

the value of f (which corresponds to the l-th “column” in the above “matrix”)

depends only on Sl = {S
(l)
1 , . . . , S

(l)
n }, where S

(l)
i = {x

(l)
i1 , . . . , x

(l)
im}, i = 1, . . . , n.

Now let us turn our attention to the absorption property. Let us assume that
an input of the function f constitutes a nested sequence. This implies that, for
any two levels 1 ≤ l ≤ l′, coordinate 1 ≤ p ≤ l, and blocks 1 ≤ i, i′ ≤ n, we have

that
∧m

j=1 x
(l)
ij [p] ≤

∧m
j=1 x

(l′)
i′j [p] which implies that

n∨

i=1

m∧

j=1

x
(l)
ij [p] ≤

n∧

i′=1

m∧

j=1

x
(l′)
i′j [p]

Consequently, the value of f for nested sequences is:









∨n

i=1

∧m

j=1 x
(1)
ij [1]

∨n
i=1

∧m
j=1 x

(2)
ij [2]

...
∨n

i=1

∧m
j=1 x

(k)
ij [k]









With this in hand, the absorption property of f follows from the absorption
property (x ∧ y) ∨ x = x of the operations ∨ and ∧.

3.5. Main Theorem

Theorem 8. The following conditions are equivalent for any structure B and
any k ≥ 1:

1. B has k-cattree duality;

2. co-CSP(B) is definable by a k-layered tree program;

3. Ck(B) admits a homomorphism to B;

4. for every m, n ≥ 1, B has an mkn-ary k-layered m-ABS polymorphism.
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Note that any structure B satisfying the conditions of the above theorem
has bounded pathwidth duality, by Theorem 6. Therefore, by results of [13],
co-CSP(B) is definable in linear Datalog and CSP(B) belongs to the complexity
class NL for any such structure.

We prove Theorem 8 through a series of lemmas, main lemmas being Lem-
mas 13, 18, 22. Note that Theorem 8 for the case k = 1 was the main result
of [10].

First, we relate k-cattree duality with k-layered tree programs. For a given
structure B and a given fragment of Datalog, there is a standard way of con-
structing the canonical program for B, in the given fragment of Datalog, see
[8, 18]. The canonical k-layered tree program for a structure B is a k-layered
tree program that contains, for every subset S of B and every l = 1, . . . , k,
the IDB I l

S of level l, and it consists of all the rules satisfying (the defining
condition of a k-layered tree program and also) the requirement that if every
IDB I l

S in the rule is interpreted as S and every EDB R is interpreted as RB,
then every assignment of elements of B to the variables that satisfies all the
atomic formulas in the body must also satisfy the atomic formula in the head.
Finally, declare Ik

∅ to be the goal predicate (or equivalently include the goal

predicate G along with the rule G : − Ik
∅ (x)). Note that IDBs corresponding

to some of the subsets S (those that cannot be defined by a primitive positive
first-order formula in B) are redundant in the sense that they are never used by
the program in any derivation of the goal predicate on any input, so sometimes
such IDBs are not included in the definition of a canonical program. Obviously,
this does not affect the class of structures accepted by the program.

Example 9. Take the poset Q whose Hasse diagram is shown in Fig. 2. Let
structure Qc be obtained from Q by adding all elements of the universe as sin-
gleton unary relations. Qc has domain {a, a′, b, b′, c} and the following relations:
Ua = {a}, Ua′ = {a′}, Ub = {b}, Ub′ = {b}, Uc = {c}, R = {(a, a), (a′, a′), (b, b),
(b′, b′), (c, c), (a, b), (a, b′), (a, c), (a′, b), (a′, b′), (a′, c), (b, c), (b′, c)}. The canon-
ical 2-layered tree program, P , for Qc has EDBs R and Uv, for each v ∈

{a, a′, b, b′, c}; and it has IDBs I
(1)
S , I

(2)
S for each S ⊆ {a, a′, b, b′, c}. On level

1 all the rules will have only IDBs I
(1)
S , for all subsets S of the domain of Qc,

and all rules that are valid implications when the IDBs I
(1)
S are interpreted as

the subsets S. The following are examples of rules in P :

I
(1)
{b}(x) : − Ub(x) I

(1)
{b,c}(y) : − R(x, y), I

(1)
{b}(x)

I
(1)
{a,a′,b}(x) : − R(x, y), I

(1)
{b}(y) I

(1)
{a,b′,c}(x) : − I

(1)
{a,c}(x)

I
(1)
{a,a′,b}(x) : − R(x, y), I

(1)
{a,a′,b′}(y) I

(1)
{c}(x) : − Uc(x), I

(1)
{b,c}(x)

On level 2, P contains the same type of rules it has on level 1, but for the IDBs

I
(2)
S , and it contains extra rules that involve IDBs I

(2)
S and I

(1)
S . These rules

have at most one IDB of level 2, I
(2)
S , in the body, but can have several IDBs

of level 1, I
(1)
S . As before, a rule appears in P if, when the IDBs in the rule

11



are interpreted as the respective subsets of {a, a′, b, b′, c} and the EDB in the
rule is interpreted as the respective relation in Qc, then every assignment of
elements of {a, a′, b, b′, c} to the variables in the rule that satisfies the body must
also satisfy the head of the rule. Examples of rules of level 2 in P are:

I
(2)
{a}(x) : − Ua(x)

I
(2)
{a}(y) : − R(x, y), I

(2)
{a}(x), I

(1)
{a,a′,b}(y), I

(1)
{a,a′,b′}(y)

I
(2)
∅ (x) : − U{a′}(x), I

(2)
{a}(x)

The program P ends with the rule G : −I
(2)
∅ (x), with G the goal predicate.

a a’

b b’

c

Figure 2: The poset Q from Example 9.

Note that B is not accepted by the canonical program for itself. Indeed, by
construction, a derivation of the goal predicate on B could be translated into
a chain of valid implications which starts from an atomic formula and finishes
with the empty (i.e., false) predicate, which is impossible. This, and the fact
that any class definable in Datalog is closed under homomorphism, implies the
following fact.

Lemma 10. If the canonical k-layered tree program for B accepts a structure
A then A 6→ B.

Lemma 11. If D is a tree, e is a hyperedge of H = H(D) such that (H, e) is
a k-cattree and a is any element in e, then the canonical k-layered tree program
for B derives, on D, the fact Ik

SD
a

(a), where SD
a is the set {h(a) | h : D → B}.

Proof. The lemma is proved by induction on k. We prove only the inductive
step and omit the proof of the base case k = 1 which is very similar (and can
be found in Lemma 8 of [10]).

Since (H, e) is a k-cattree, there exists a caterpillar E such that E and e
satisfy condition (2) of Definition 5. We shall prove the statement by induction
on the number n of hyperedges of E. Again, we shall prove only the inductive
step as the argument for the case base n = 1 is similar and, indeed, simpler.

Set E′ = E\{e} and let H ′ be the connected component of H\{e} containing
all hyperedges of E′. There exists an element v occurring both in e and V (H ′).
The element v must appear in an extreme e′ of E′ and hence by induction
hypothesis (on the size of E) the k-layered tree program can derive, on the
induced substructure D[∪H ′] (and hence on D), the fact Ik

S
D[∪H′]
v

(v).

12



Now, let T1, . . . , TJ be the set of subtrees of H cut off by {e} and not
containing v. For every j = 1, . . . , J , let ej be the edge of Tj connecting Tj with
{e} and let {vj} be ej ∩ e. By the definition of k-cattree, for every j = 1, . . . , J
(Tj , ej) is a (k − 1)-cattree and by induction hypothesis (on k), the canonical
(k − 1)-layered program (and hence the k-layered program as well) can derive,
on D[∪Tj ] (and hence on D), the fact Ik−1

S
D[∪Tj ]
vj

(vj).

Assume first that |e| ≥ 2. In this case each node of H is in e∪H ′∪
⋃

j∈J Tj .
In terms of homomorphisms this implies that if R(u1, . . . , un) is the tuple of D

corresponding to hyperedge e, and we let v = um and for every j ∈ 1, . . . , J we
let vj = uij

then we have that the relation {(h(u1), . . . , h(un)) | h : D → B} is
equal to

{(b1, . . . , bn) ∈ RB : bm ∈ SD[∪H′]
v and bij

∈ SD[∪Tj ]
vj

for all j = 1, . . . , J}

Hence, if a = ul then the canonical k-layered program contains the rule

Ik
SD

a
(xl) : −R(x1, . . . , xn), Ik

S
D[∪H′]
v

(xm), Ik−1

S
D[∪T1]
v1

(xi1 ), . . . , I
k−1

S
D[∪TJ ]
vJ

(xiJ
)

which would allow the canonical program to derive Ik
SD

a
(a).

If |e| = 1 then the reasoning is very similar. Clearly a = v = v1 = · · · = vJ ,
e = {a}, and we have that every node of H is in H ′ ∪

⋃

j∈J Tj . Hence

{h(a) | h : D → B} = SD[∪H′]
a ∩

⋂

j=1,...,J

SD[∪Tj ]
a

Hence, the canonical k-layered program contains the rule

Ik
SD

a
(x) : −Ik

S
D[∪H′]
a

(x), Ik−1

S
D[∪T1]
a

(x), . . . , Ik−1

S
D[∪TJ ]
a

(x)

which would allow the canonical program to derive Ik
SD

a
(a). This concludes the

proof.

Note that by definition of S
D[∪H′]
a we have that S

D[∪H′]
a ⊆ {b ∈ B | (b, . . . , b) ∈

RB}. Consequently, the canonical k-layered program contains also the rule

Ik
SD

a
(x) : −R(x, . . . , x), Ik

S
D[∪H′]
a

(x), Ik−1

S
D[∪T1]
a

(x), . . . , Ik−1

S
D[∪TJ ]
a

(x)

which could also be used to derive Ik
SD

a
(a). This remark will later be used to

justify Remark 15 which refers to this proof.

Before continuing we need to take care of some small technicalities which
will allow us to restrict further the shape of the rules.

Lemma 12. Let B be a relational structure. For every k-layered tree program
P that defines co-CSP(B), there exists an equivalent k-layered tree program P ′

such that every rule contains an EDB and, in addition, every variable appearing
in a rule also appears in the EDB in the rule.
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Proof. Let t0 : −t1, . . . , tn be a rule of P and assume that the set of variables
can be partitioned in two proper subsets X , Y such that no atomic formula
in the body contains variables from both sets simultaneously. Since the order
of the atomic formulas does not alter a rule we can assume without loss of
generality that there exists 1 ≤ i < n such that every variable that occurs in
some predicate tj with j ≤ i belongs to X and every variable that occurs in
some predicate tj with j > i belongs to Y . Also, we can assume that if the
predicate in the head t0 is unary then the variable x occurring in t0 belongs to
X .

We shall prove that one can write an equivalent program in which no rule
can be partitioned in this way. Observe that, since the IDBs are unary, this will
imply that if a rule contains an EDB then necessarily every variable in the rule
must appear in it. Assume, for contradiction, that, among all k-layered tree
programs that define co-CSP(B), P has the smallest number of rules where the
variables can be partitioned as above, and that t0 : −t1, . . . , tn is such a rule
in P , with X, Y and i defined as above. Consider the program PY obtained
by replacing the rule t0 : −t1, . . . , tn by the rule G : −ti+1, . . . , tn where G is
the goal predicate. Note that PY will accept everything that P accepts. If
the PY is equivalent to P then we get a contradiction with the choice of P .
Otherwise, there exists some structure AY which is homomorphic to B but
accepted by PY . Now consider the program PX , obtained by replacing, in P ,
the rule t0 : −t1, . . . , tn by t0 : −t1, . . . , ti. We claim that PX is equivalent
to P . Again, it is easy to see that PX accepts everything that P accepts (in
fact, by using the same sequence of rules as P ). To prove that PX is equivalent
to P , assume, for contradiction, that PX accepts some structure AX which is
homomorphic to B. Then we claim that P accepts the disjoint union AX ⊕AY

of the structures AX and AY . In fact, it does so by replicating the run of PX

on input AX . To see this, notice first that if AY is accepted by PY then this
is necessarily by application of the rule G : −ti+1, . . . , tn. Let sY : Y → AY be
the instantiation of the variables of the rule in this application. Hence, every
time when there is some instantiation of the variables in X , sX : X → AX ,
that allows one to use the rule t0 : −t1, . . . , ti with input AX , sX can be
combined with sY to obtain an instantiation for the rule t0 : −t1, . . . , tn with
input AX ⊕AY . Hence, P accepts AX ⊕AY . Since P defines co-CSP(B), we
have that AX ⊕AY is not homomorphic to B, which contradicts the assumption
that both AX and AY are homomorphic to B.

It only remains to see that we can get rid of all the rules that do not contain
an EDB. By the previous considerations and the fact that we are dealing with
monadic predicates we can assume that every rule not containing an EDB is of
the form t0 : −I1(x), . . . , In(x) where Ii, 1 ≤ i ≤ n are IDBs. Consider now
the Datalog program, P ′, obtained by replacing the rule t0 : −I1(x), . . . , In(x)
by the family of rules of the form t0 : −I1(x), . . . , In(x), R(x1, . . . , xr) where
R is a r-ary EDB, {x1, . . . , xr} are different variables, and xi = x for some
1 ≤ i ≤ r. It is easy to see that P accepts every structure accepted by P ′

because, whenever P ′ uses a newly introduced rule in a run, P can simulate it
with an application of the old rule from which the new rule was obtained. We
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claim that, in fact, P ′ is equivalent to P . Assume towards a contradiction that
P ′ fails to accept a structure A that is not homomorphic to B. We can without
loss of generality assume that A does not contain isolated nodes (such nodes
never affect acceptance by a Datalog program or membership in CSP(B)), i.e.,
assume that every node participates in at least one tuple in some relation. Since
A is not homomorphic to B we know that P would derive the goal predicate
on input A. We shall see that this derivation could be replicated by program
P ′, reaching a contradiction. Indeed, every time that P needs to apply rule
t0 : −I1(x), . . . , In(x) with x instantiated to element a in A, we know that a is
not isolated and henceforth there exist some R ∈ τ and (a1 . . . , ar) ∈ RA with
a = ai for some 1 ≤ i ≤ r. Hence P ′ could replicate this movement by applying
rule t0 : −I1(x), . . . , In(x), R(x1, . . . , xk) with xi = x.

Lemma 13. Let B be a structure and k ≥ 1. The following are equivalent:

1. co-CSP(B) is definable by a k-layered tree program.

2. B has an obstruction set consisting of k-cattrees.

Proof. (1) ⇒ (2) Suppose that co-CSP(B) is defined by a k-layered tree pro-
gram P . This means that a structure A satisfies A 6→ B if and only if A

is accepted by the program. We shall also assume that P satisfies the extra
requirements given by Lemma 12.

If A 6→ B then by the Sparse Incomparability Lemma [34] there is a structure
C that is homomorphic to A but not to B that does not contain loops, i.e.,
such that, for every tuple (a1, . . . , ar) in any relation in C, ai 6= aj for all
1 ≤ i 6= j ≤ r.

We show by induction on the number of levels k, that if I is an IDB of the
k-th level and I(a) is derived by the Datalog program on C then there exist
some tree T, some hyperedge e of H(T), and some t ∈ e such that (H(T), e) is
a k-cattree, we have T, t → C, a, and P derives I(t) on T.

It is convenient to do first the inductive step. Let us read the section of
the derivation of I(a) involving only rules whose IDB in the head has level k
reversing the order of derivation. By our assumptions on the program P we
obtain a sequence of the form:

I(a) : − R1(c
1
1, . . . , c

1
r1

), I1(a1), J1
1 (b1

1), . . . , J
n1
1 (bn1

1 )
I1(a1) : − R2(c

2
1, . . . , c

2
r2

), I2(a2), J1
2 (b1

2), . . . , J
n2
2 (bn2

2 )
...

Il−1(al−1) : − Rl(c
l
1, . . . , c

l
rl

), Il(al), J1
l (b1

l ), . . . , J
nl

l (bnl

l )

Il(al) : − Rl+1(c
l+1
1 , . . . , cl+1

rl+1
), J1

l+1(b
1
l+1), . . . , J

nl+1

l+1 (b
nl+1

l+1 )

where the Ii’s are (not necessarily different) IDBs of level k, the Jj
i ’s are (not

necessarily different) IDBs of level smaller than k, Ri is an EBD of arity ri, and
every element of the form au or b∗u is also one of cu

∗ .
Consider the τ -structure E defined in the following way: The universe of E is

the subset of C×{1, . . . , l+1} containing all pairs (x, i) such that x appears in the
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body of the i-th step of the above derivation. Secondly, for every i = 1, . . . , l+1
add the tuple ((ci

1, i), . . . , (c
i
ri

, i)) to RE
i . Finally, for every i = 1, . . . , l glue

together the elements (ai, i) and (ai, i + 1). Clearly H(E, {(c1
1, 1), . . . , (c1

r1
, 1)})

is a 1-cattree and the first projection defines a homomorphism E, (a, 1) → C, a.
For every 1 ≤ i ≤ l+1, 1 ≤ j ≤ ni, the predicates Jj

i are of smaller level and

hence, by the induction hypothesis, there exists a structure T
j
i , an hyperedge

ej
i ∈ H(Tj

i ), and a distinguished element tji ∈ ej
i such that (H(Tj

i ), e
j
i ) is a

(k − 1)-cattree, T, tji → C, bj
i and P derives Jj

i (tji ) on T
j
i .

Now construct a structure T as the disjoint union of E and all T
j
i ’s and

glue every tji to (bj
i , i). Observe that since all the structures involved in the

construction are homomorphic to C by homomorphisms such that every pair of
glued elements have the same image, if we set t = (a, 1) we have T, t → C, a.
Furthermore program P can derive I(t) on T by replicating the derivation on the
preimages of the homomorphism. Finally, according to rule (2) of Definition 5,
(H(T), {(c1

1, 1), . . . , (c1
r1

, 1)}) is a k-cattree.
The proof of the base case (k = 1) is very similar (and indeed simpler as we

do not have to deal with IDBs of lower levels).
Finally, to complete the proof we assume (by rewriting our Datalog program

if necessary) that any rule with the goal predicate in the head is of the form
G : −I(a) where I is an IDB. The claim implies that there exists a tree T

homomorphic to C and hence to A such that P derives the goal predicate on
T and hence T 6→ B.

(2) ⇒ (1) Conversely, assume that B has an obstruction set of the form
specified by condition (2) of this lemma. We claim that the canonical k-layered
tree program defines co-CSP(B). By Lemma 10 the program never accepts a
structure that homomorphically maps to B. Now, let A be a structure not
homomorphic to B. By assumption there is a k-cattree T such that T → A

and T 6→ B. As a direct consequence of Lemma 11, the canonical k-layered
tree program accepts T and, since the set of accepted structures of a Datalog
program is closed under homomorphism, it accepts A as well.

Corollary 14. If co-CSP(B) is definable by a k-layered tree program then it is
definable by the canonical one.

Furthermore, by inspecting the proofs of Lemmas 11 and 13 we see that
the rules used in the derivation of the goal predicate are of the restricted form
specified in Lemma 12. Hence we have:

Remark 15. If the canonical k-layered tree program for B can derive the goal
predicate on a given structure A then it can also do so by using only rules that
contain an EDB and, in addition, such that every variable appearing in a rule
also appears in the EDB in the rule.

Lemma 16. Ck(B) is not accepted by the canonical k-layered tree program for
B.
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Proof. We will show by induction on the length of derivation that whenever the
fact I l

S(S) is derived by the program, we have S ∈ S[l].
Assume first that I l

S(S) is derived by an introductory rule (i.e., one whose
body contains no IDB and R ∈ τ is the EDB in the rule), that is, we have
I l
S(S) : −R(. . . , S, . . .) where S appears in the m-th component in the tuple on

the right. Note that this tuple belongs to RCk(B). Then, by the definition of the
canonical program, we have S ⊇ prm(RB), which must be contained in Sm[l] by
the definition of Ck(B).

Assume now that I l
S(S) is derived by a non-introductory rule of the form

I l
S(Xi) : −R(X1, . . . , Xr), I

l
S′(Xj), I11(X1), . . . , I1s1(X1), . . . , Ir1(Xr), . . . , Irsr

(Xr)

where each IDB Iuv is of level at most l − 1. Observe that not all parts of
the body (such as the IDB I l

S′(Xj)) must be present. However, we will assume
that the EDB R(X1, . . . , Xr) is always present. This will be sufficient due to
Remark 15.

Let (S1, . . . , Sr) be the tuple in RCk(B) used with the rule to derive I l
S(S).

By the induction hypothesis, we have that (i) for each u = 1, . . . , r and v =
1, . . . , su, the subset corresponding to IDB Iuv is included in Su[i] where i is the
level of Iuv, and hence by the construction of Ck(B), is in Su[l − 1]. Also, by
induction hypothesis, we have S′ ∈ Sj [l] (if I l

S′(Xj) is present). Now it follows
directly from the fact (S1, . . . , Sr) ∈ RCk(B) (see the definition of Ck(B)) and
the definition of the canonical program that S ∈ S[l].

Assume now that Ck(B) is accepted by the canonical program. Then the
program can derive I l

∅(S) for some l and some S. By Remark 15, it can do so
using only rules such as above. Then, as we just proved, the empty set belongs
to S[l] which is impossible by the definition of Ck(B).

Lemma 17. A structure A is not accepted by the canonical k-layered tree pro-
gram for B if and only if A → Ck(B).

Proof. Assume first that A → Ck(B). Since the class of structures accepted
by any Datalog program is closed under homomorphism, the required condition
follows from Lemma 16.

Conversely, assume that A is not accepted by the program. Hence the
canonical program stabilizes without deriving the goal predicate. For each el-
ement a of A, define Sa as follows: for each level 1 ≤ l ≤ k, set Sa[l] = {S |
I l
S(a) is derived}. It is easy to see that the family Sa[l] is non-empty for any

level l and any a that appears in a tuple in a relation in A. Moreover, since the
goal predicate is not derived, I l

∅(a) is not derived either, and so each subset in a

non-empty Sa[l] is non-empty. It is straightforward to check that the mapping
h : A → Ck(B) given by h(a) = Sa (set h(a) arbitrarily if a does not participate
in any tuple) is a homomorphism from A to Ck(B).

Lemma 18. For any structure B, co-CSP(B) is definable by a k-layered tree
program if and only if Ck(B) admits a homomorphism to B.
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Proof. Suppose that co-CSP(B) is definable by a k-layered tree program. By
Lemma 16, Ck(B) is not accepted by the canonical program, and so Ck(B) →
B.

Conversely, suppose that Ck(B) → B and let A be an arbitrary structure. If
A is not accepted by the canonical k-layered Datalog Program, then, by Lemma
17, we have that A → Ck(B) and it follows that A → B from transitivity of
homomorphism. If A is accepted by the canonical k-layered tree program then
A 6→ B from Lemma 10.

Remark 19. If (S1, . . . , Sr) and (T1, . . . , Tr) are coherent with RB in ground
(G1, . . . , Gr) then so are (S1 ∪ T1, . . . , Sr ∪ Tr) and (S1 ∩ T1, . . . , Sr ∩ Tr).

Remark 20. Let (S1, . . . , Sr) be a tuple such that for every i = 1, . . . , r, Si is
closed under inverse inclusion. If (S1, . . . , Sr) is coherent with RB in ground
(G1, . . . , Gr) then it is also such in ground (G1, . . . , Gj−1, G

′
j , Gj+1, . . . , Gr) for

every j ∈ {1, . . . , r} and Gj ⊆ G′
j .

Lemma 21. For any structure B and any k, m, n ≥ 1, the structure Ck(B) has
a (m · k · n)-ary k-layered m-ABS polymorphism.

Proof. Let f be the operation as in Example 7, but with ∨ and ∧ replaced by
∪ and ∩, respectively. It can be straightforwardly verified that this operation is
still a k-layered m-ABS operation. It remains to check that it is a polymorphism
of Ck(B). First it is easy to observe, by using Remarks 19 and 20 that the
component-wise intersection (i.e., the binary operation such that (S1 ∩ S2)[l] =
S1[l]∩S2[l] for all l) is a polymorphism of Ck(B). With a little bit of extra work
we can obtain the following generalization of this result.

Let gj be the binary operation on Cj(B) such that gj(S1, S2)[l] = S1[l]∩S2[l]
for 1 ≤ l ≤ j − 1 and g(S1, S2)[j] = S1[j]∪ S2[j]. Furthermore, for 1 ≤ i ≤ j, let
hi,j : Ci(B)×Cj(B) → Cj(B) be defined by the rule hi,j(S1, S2)[l] = S1[l]∩S2[l]
for 1 ≤ l ≤ i and hi,j(S1, S2)[l] = S2[l] for i < l ≤ j.

Claim 1. We have that (1) f is a polymorphism of Cj(B) and (2) hi,j is a
homomorphism from Ci(B) × Cj(B) to Cj(B).

Proof. We prove part (1), part (2) is very similar. Let (S1, . . . , Sr) and (T1, . . . , Tr)
be tuples in RCj(B). We need to show that (gj(S1, T1), . . . , gj(Sr, Tr)) ∈ RCj(B).
For each level, we need to check the coherence condition from the definition of
Cj(B). The coherence condition for level 1 follows directly from Remark 19.
Assume now that l > 1. By definition, the l-th level (S1[l], . . . , Sr[l]) of the
first tuple is coherent with RB in ground (

⋂
S1[l−1], . . . ,

⋂
Sr[l−1]) and hence

it is also coherent in ground (G1, . . . , Gr) where Gi =
⋂

(Si[l − 1] ∩ Ti[l − 1]),
i = 1, . . . , r, by Remark 20. The same reasoning shows that (T1[l], . . . , Tr[l]) is
also coherent in ground (G1, . . . , Gr). According to the definition of gj, we need
to distinguish cases 1 < l < j and l = j, but in both cases part (1) of the claim
now follows from Remark 19.
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Finally, by iterative application of the previous claim one can easily prove
by (reverse) induction on r = 1, . . . , k that the operation

f(S
(r)

11 , . . . , S
(r)

1m, . . . , S
(r)

n1 , . . . , S
(r)

nm, . . . , S
(k)

11 , . . . , S
(k)

1m, . . . , S
(k)

n1 , . . . , S
(k)

nm)

defined as


















(
⋂n

i=1

⋂m
j=1 S

(r)

ij [1]) ∩ (
⋂n

i=1

⋂m
j=1 S

(r+1)

ij [1]) ∩ . . . ∩ (
⋂n

i=1

⋂m
j=1 S

(k)

ij [1])

(
⋂n

i=1

⋂m

j=1 S
(r)

ij [2]) ∩ (
⋂n

i=1

⋂m

j=1 S
(r+1)

ij [2]) ∩ . . . ∩ (
⋂n

i=1

⋂m

j=1 S
(k)

ij [2])
...

(
⋃n

i=1

⋂m

j=1 S
(r)

ij [r]) ∩ (
⋂n

i=1

⋂m

j=1 S
(r+1)

ij [r]) ∩ . . . ∩ (
⋂n

i=1

⋂m

j=1 S
(k)

ij [r])

(
⋃n

i=1

⋂m

j=1 S
(r+1)

ij [r + 1]) ∩ . . . ∩ (
⋂n

i=1

⋂m

j=1 S
(k)

ij [r + 1])
...

(
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i=1

⋂m

j=1 S
(k)

ij [k])


















is a polymorphism of Ck(B).

Lemma 22. For any fixed k ≥ 1, a structure B has an mkn-ary k-layered
m-ABS polymorphism for all m, n if and only if Ck(B) → B.

Proof. Let h : Ck(B) → B be a homomorphism. By Lemma 21, the structure
Ck(B) has an mkn-ary k-layered m-ABS polymorphism fn,m for all n, m. By
Lemma 17 and Lemma 10, there exists a homomorphism g : B → Ck(B). It is
easy to check that the operations h(fn,m(g(x1), . . . , g(xnmk))) are the required
polymorphisms of B.

For the other direction, let f be an mkn-ary k-layered m-ABS polymorphism
of B with m = ρ · |B| and n = ρ · (2|B| − 1), where ρ is the maximum of the
arities of the relations in B. We can assume without loss of generality that
every element of B participates in some tuple. Define a map h : Ck(B) → B
by the rule h(S) = f(min(S)) where the sequence min(S) is obtained from S so
that, for each level l, min(S)[l] contains only those S ∈ S[l] that are minimal
under inclusion in S[l].

By the properties of f , we see that h is well-defined. It remains to show that
h defines an homomorphism.

Take an arbitrary (say, r-ary) relation R ∈ τ and fix (S
1
, . . . , S

r
) ∈ RCk(B).

We need to show that (h(S
1
), . . . , h(S

r
)) ∈ RB. For this, we build a matrix M ,

as follows.
For every i = 1, . . . , r, and l = 1, . . . , k, define Gi

l to be B if l = 1 and
⋂

S
i
[l − 1] if l > 1. Also, for every i = 1, . . . , r and l = 1, . . . , k and for each set

S ∈ S
i
[l], construct a (m × r)-matrix M i

S [l] whose entries are elements from B
and such that
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1. each row of M i
S [l] is an element of RB, and

2. for any 1 ≤ s ≤ r, the set of entries in the s-th column is exactly
prs(R

B ∩ (G1
l × · · · × Gi−1

l × S × Gi+1
l × · · · × Gr

l )).

That is, the matrix can be seen as a sequence of m tuples t1, . . . , tm (the rows)
of RB such that {t1, . . . , tm} = RB∩(G1

l ×· · ·×Gi−1
l ×S×Gi+1

l ×· · ·×Gr
l ). This

is easily achieved by placing in the matrix all tuples t1, . . . , tm and repeating
some of them if necessary.

Observe that by the definition of Ck(B), (S
1
[l], . . . , S

r
[l]) is coherent with

RB in ground (G1
l , . . . , G

r
l ) and hence, for every s, the set of all entries in the

s-th column of M i
S[l] (a) belongs to S

s
[l] and (b) is a subset of Gs

l (here we use

both parts of the definition of coherence). Furthermore, if S is minimal in S
i
[l]

then the set of entries in the i-th column is precisely S.
Now construct for every l = 1, . . . , k a (mn × r)-matrix M [l] as follows. It

is divided into n layers of consecutive m rows, each layer is a matrix M i
S [l] for

some 1 ≤ i ≤ r and some S ∈ S
i
[l], and each matrix of this form appears as a

layer. By the choice of n, this is possible.
Finally form the (mkn × r)-matrix M whose first mn rows are occupied by

matrix M [1], next mn rows by matrix M [2] and so on.

For every s = 1, . . . , r, consider Ŝs, which is the sequence (Ŝs[1], . . . , Ŝs[k])

such that for any T ⊆ B and l = 1, . . . , k, we have T ∈ Ŝi[l] if and only if T
is the set of entries of the s-th column of some M i

S [l]. Hence, if we apply f to

matrix M column-wise, we obtain the tuple (f(Ŝ1), . . . , f(Ŝr)) which belongs to
RB because every row of M is in this relation and f is a polymorphism of B.

By the remarks made after the construction of M i
S [l] we have that, for every

s = 1, . . . , r, min(S
s
) = min(Ŝs). By the construction of the matrices, for

l > 1, every T ∈ Ŝs[l] is a subset of Gs
l (which coincides with

⋂
Ŝs[l − 1]),

and it follows that Ŝs is a nested sequence. It then follows from the absorption
property of f that, for every s = 1, . . . , r, we have f(Ŝs) = f(min(Ŝs)), and since

min(S
s
) = min(Ŝs), we have (h(S

1
), . . . , h(S

r
)) = (f(min(S

1
), . . . , f(min(S

r
)) =

(f(Ŝ1), . . . , f(Ŝr)) ∈ RB. We conclude that h : Ck(B) → B.

Remark 23. If a structure B has mkn-ary k-layered m-ABS polymorphism for
m = ρ · |B| and n = ρ · (2|B| − 1), where ρ is the maximum of the arities of the
relations in B, then, for any m, B has k-layered m-ABS polymorphisms of all
arities divisible by mk.

Proof. (of Theorem 8).
(1) ⇔ (2) follows from Lemma 13.
(2) ⇔ (3) follows from Lemma 18.
(3) ⇔ (4) follows from Lemma 22.
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4. Case study: posets with constants

In this section we investigate k-cattree duality for special structures obtained
from posets. Fix a (finite) poset Q and let Qc denote the structure obtained
from Q by adding all elements of Q as singleton unary relations. Let us denote
the signature of Qc by τ , the binary relation in τ by R, and the unary relations
in τ by Uq, q ∈ Q. Problems of the form CSP(Qc) are closely related to the
so-called poset retraction problems (see, e.g., [15]).

For a partial order ⊑ on a set A, and for elements s, s′ ∈ A, we say that
(s, s′) is a covering pair if we have s ⊏ s′, and s ⊑ t ⊑ s′ implies that t = s or
t = s′. Note that if we remove such a pair (s, s′) from the relation ⊑ then we
still have a partial order on A. If A is a τ -structure such that RA is a partial
order, let A denote the covering structure of A, obtained from A by replacing
RA with the set of all covering pairs in RA. If a τ -structure A′ is obtained from
τ -structure A by adding a new element w to the universe, replacing some pair
(u, v) in RA by two pairs (u, w), (w, v), and leaving the rest of A unchanged
then we say that A′ is obtained from A by subdividing an arc. Moreover, we
say that a τ -structure A′′ is a subdivision of A if A′′ can be obtained from A

by a successive subdividing of arcs. The following claim is easy to verify.

Remark 24. If A ∈ co-CSP(Qc) and RA is a partial order then the covering
structure A and all its subdivisions are also in co-CSP(Qc).

We will use the notion of a zigzag for a poset [28, 36, 37, 38], not the original
definition, but an equivalent characterisation from Proposition 3.1 of [38] (see
also Claim 1.1 in [37]). Consider a τ -structure Z and assume that no element of
Z belongs to two different unary relations in Z. The structure Z is called a Q-
zigzag if Z ∈ co-CSP(Qc), RZ is a connected partial order and every structure
obtained from Z by removing a covering pair from RZ belongs to CSP(Qc). It
is easy to see that every τ -structure A such that RA is a partial order belongs
to co-CSP(Qc) if and only if the unary relations in A are not pairwise disjoint
or A contains a Q-zigzag as a substructure.

Example 25. (i) Every poset Q has so-called non-monotone zigzags which are
two-element structures N with universe N = {s, t}, RN = {(s, s), (s, t), (t, t)}
being an order on N , and such that s ∈ Uu, t ∈ Uv for some u 6⊑ v (in Q), and
all other unary relations are empty. (All other zigzags are called monotone).

(ii) Consider the poset Q from Fig. 3 (left), same as in Example 9. The
monotone zigzags for this poset were described in [37] (see Fig. 6 in [37]). Intu-
itively, they witness the fact that one cannot homomorphically map an oriented
path to Q in such a way that one end of the path goes to a, the other to a′, and
every element of the path is mapped below both b and b′. More formally, each
monotone Q-zigzag is a structure of the form Zj,t (where either j = 0 and t ≥ 2
or j = 1 and t ≥ 1), which can be described as follows.

• Let C0 = {c0, c1, . . . , ct}, and C1 = C0 ∪ {c−1}. The universe of Zj,t is
Zj,t = Cj ∪ {di, ei | 1 ≤ i < t is odd }.
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• For j = 0, the binary relation of the covering structure Zj,t consists of

– all pairs (ci, ci+1), where i ≤ t − 1 is even,

– all pairs (ci+2, ci+1) where i ≤ t − 2 is even, and

– all pairs (ci, di) and (ci, ei) where 1 ≤ i < t is odd.

For j = 1, it also contains the pair (c0, c−1).

• The unary relations are as follows: Ua = {c0} if j = 0 and Ua = {c−1}
if j = 1, Ua′ = {ct}, Ub = {di | i < t is odd }, Ub′ = {ei | i < t is odd },
and Uc = ∅.

An example of such a structure (with j = 0 and odd t) is shown on Fig. 3
(right), where the elements in unary relations are depicted in black and labelled
by the corresponding elements of Q.

c

...   ...

...   ...

b’ b b’ b b’ b

a a’

b b’

a

a’

 b’b

Figure 3: The poset Q from Example 25(ii) and a Q-zigzag.

For a poset Q, let OQ denote the class consisting of (1) all subdivisions
of covering structures Z where Z runs through all Q-zigzags and (2) all one-
element τ -structures in which the single element is contained in two different
unary relations and all other relations are empty.

Lemma 26. For a poset Q, the class of τ-structures OQ is an obstruction set
for Qc.

Proof. By Remark 24, we have that OQ is a subclass of co-CSP(Qc). Now fix
a τ -structure A ∈ co-CSP(Qc). If the unary relations in A are not pairwise
disjoint then obviously A contains a substructure of type (2) above. So assume
that this is not the case and show that A admits a homomorphism from a
subdivision of Z for some Q-zigzag Z.

Let θ denote the reflexive transitive closure of RA. The relation θ is a quasi-
order, so it is well known that the relation ǫ = θ∩θ−1 is an equivalence relation
on A, and θ induces a partial order � on the set A/ǫ of ǫ-classes. Let A′ denote
the τ -structure whose universe is A/ǫ and the relations are obtained from those
of A by replacing each element a in each tuple in each relation by its equivalence
class a/ǫ. Note that RA′

is exactly �, and we have a/ǫ � b/ǫ in A′ if and only
if a = b or there is a directed path from a to b in RA.

Suppose first that some element x/ǫ is contained in UA′

u ∩ UA′

v for some
distinct u, v ∈ Q. This means that there exist a, b ∈ x/ǫ such that a ∈ UA

u
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and b ∈ UA
v . Since a and b are in the same ǫ-class, they are connected in RA

by directed paths in both directions. Assume without loss of generality that
u 6≤ v in Q. Then the substructure of A consisting of the directed path from
a to b (as its binary relation) and a, b in the unary relations Uu, Uv, respec-
tively, is a subdivision of the covering structure of a non-monotone Q-zigzag
(see Example 25(i)).

So we can assume from now on that the unary relations in A′ are pairwise
disjoint. If h′ is a homomorphism from A′ to Qc then it is easy to verify that the
mapping h : A → Q defined by h(a) = h′(a/ǫ) is homomorphism from A to Qc.
Hence, by our assumption on A, we have A′ ∈ co-CSP(Qc). It follows that A′

contains a Q-zigzag Z. For each element K ∈ Z, fix an element aK ∈ K in such
a way that aK ∈ UA

q whenever K ∈ UZ
q . Consider the following subdivision

of Z: for every arc (K, K ′) in RZ fix a directed path from aK to aK′ in RA,
and subdivide the arc (K, K ′) as many times as needed to match the length of
the path from aK to aK′ . Call the obtained structure T. By Remark 24, we
have T ∈ co-CSP(Qc). It remains to show that T → A. Define h : T → A as
follows: if K ∈ Z then let h(K) = aK , and if x ∈ T \ Z is an i-th element on
the (unique) path from some K ∈ Z to some K ′ ∈ Z in RT then let h(x) be the
i-th element on the (fixed) path from aK to aK′ in RA. It is easy to see that
h : T → A.

Example 27. It is easy to see from the description of zigzags for the poset Q

on Fig. 3 (see Example 25) that the class OQ obtained as in Lemma 26 consists
of 2-cattrees (note that the covering structures of Q-zigzags are all 1-cattrees,
but not necessarily such after subdividing arcs). Hence the structure Qc has 2-
cattree duality. Other similar examples of structures with 2-cattree duality can be
obtained by using results from [37]. Note that Qc does not have 1-cattree duality
because any such structure would have a majority polymorphism (see [10]), while
Qc has no NU polymorphisms, as shown in [37].

However, we will now show that, for any poset Q with an NU polymorphism
(of some arity), the structure Qc has k-cattree duality for some k. Posets with
NU polymorphisms have been characterised in many equivalent ways in [28].
Note that it is a well-known open question in the study of dualities for CSP
whether every structure B with an NU polymorphism has bounded pathwidth
duality (see [8, 14]).

Proposition 28. If Q is a poset with an NU polymorphism then Qc has k-
cattree duality for some k.

Proof. Assume first that Q is connected. It is shown in [28] that a connected
poset has an NU polymorphism if and only if it has finitely many zigzags (note
that this does not imply that Qc has finite duality, as defined in Subsection 2.4).
Moreover, by a result of [29], such a poset Q has a totally symmetric idempo-
tent polymorphism of arity |Q|. Then, by Proposition 1 of [36], Q has totally
symmetric idempotent polymorphisms of all arities, and Corollary 5 of [36] says
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that in this case every Q-zigzag Z′ admits a surjective homomorphism from a

Q-zigzag Z such that Z is a tree (i.e., the digraph RZ is an oriented tree).
Let O′

Q denote the class consisting of (i) all subdivisions of Z such that Z is

a Q-zigzag and Z is a tree (ii) all one-element τ -structures in which the single
element is contained in two different unary relations (and all other relations are
empty). Note that if a τ -structure is a (k−1)-cattree then all of its subdivisions
are k-cattrees. So, if k is the minimum number such that each covering structure
of a Q-zigzag that is a tree is in fact a (k − 1)-cattree then every structure in
O

′
Q is a k-cattree. (This number k exists because Q has finitely many zigzags).

In view of Lemma 26, it remains to show that if T′ is a subdivision of Z′ where
Z′ is a Q-zigzag, and there is a surjective homomorphism f from a Q-zigzag
Z to Z′, then there is subdivision T of Z which admits a homomorphism to
T′. To construct T, we subdivide Z as follows: each arc (s, s′) is subdivided to
obtain a path (from s to s′) of the same length as the (unique) path from f(s)
to f(s′) in T′. It is now clear how to build a homomorphism from T to T′ - it
coincides with f on Z and simply matches the paths on T \ Z, as in the proof
of Lemma 26. We conclude that O′

Q is an obstruction set for Qc.
Assume now that Q is not connected. Call a Q-zigzag Z a connectedness

zigzag if it is a path with ends coloured by elements from different connected
components of Q; more formally, it is obtained from the structure Zj,t (see
Example 25(ii)) as follows: (i) remove all elements di and ei from the universe
and all tuples containing them from the relations; (ii) keep the relations Ua

and Ua′ the same, but this time a and a′ is an arbitrary pair of elements from
different connected components of Q; (iii) make all other unary relations empty.
It is easy to verify that if a Q-zigzag Z has non-empty unary relations corre-
sponding to elements from different connected components of Q then it must
be a connectedness zigzag. On the other hand, if all non-empty unary rela-
tions in Z correspond to elements from the same connected component of Q

then Z must be a zigzag for that connected component (technically, expanded
with empty unary relations corresponding to the elements from other connected
components).

Note that, for each connectedness Q-zigzag Z, the covering structure Z and
all its subdivisions are 1-cattrees, and hence k-cattrees for all k. It is easy to see
that the NU polymorphism of Q preserves each connected component of Q, so
each connected component of Q has an NU polymorphism. It is clear now how
to find the required obstruction set for Qc: take all subdivisions of the covering
structures of connectedness zigzags and also all structures from O′

Q′ (suitably

expanded with empty unary relations) where Q′ runs through all connected
components of Q.

5. Cattrees and hypergraph searching games

In this section, we investigate searching games on trees. In particular, we
characterise k-cattrees in terms of such games and also prove Theorem 6. Most
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of our results in this section can be of independent interest in graph theory.
Graph and hypergraph searching games have recently attracted considerable

attention (see [19, 20]). Such a game usually involves a fugitive and a set of
searchers. The main types of searchers are cops, who can only occupy vertices,
and marshals, who can only occupy (hyper)edges. A cop controls only the vertex
it occupies, while a marshal controls all vertices in the (hyper)edge it occupies.
In each round of the game, searchers can change their positions. The fugitive
occupies a vertex, he sees where the searchers are landing and can move to a
different vertex at infinite speed through paths in the (hyper)graph as long as
he does not cross nodes controlled by a searcher. The goal of the cops/marshals,
who act in a coordinated manner, is to land on a vertex/(hyper)edge occupied
by the fugitive whereas the goal of the fugitive is to elude capture. A large
number of variants of searching games were studied, with additional features of
fugitive or searchers, and the minimum number of cops/marshals necessary to
capture the fugitive on a (hyper)graph in a given variant of the game is often
closely related with important structural parameters of (hyper)graphs.

Some of the most important optional features of search games are the invisi-
bility of the fugitive (i.e., searchers have no information on his current position),
the connectedness of the “cleared” space (of vertices where the fugitive cannot
be at a given stage), and the monotonicity (i.e., the fugitive must be prevented
from ever entering any cleared vertex) [3, 19]. For example, the minimum
number of marshals in the monotone game characterises hypertree-width of a
hypergraph [20], and the requirement of monotonicity is necessary for this [1].

In this paper we consider the searching game on hypergraphs in which mar-
shals can arbitrarily change their positions in each round and the fugitive is
invisible. This variant of the game has been intensively studied for graphs, but,
to the best of our knowledge, it has not been introduced for hypergraphs.

In order to formalize a winning strategy in a game, we need to introduce
some definitions. The Gaifman graph of a hypergraph H = (V (H), E(H)),
denoted by G(H), is the graph G with V (G) = V (H) and that has an edge
(u, v) if u 6= v and there exists some hyperedge e with {u, v} ⊆ e. Let H be
a hypergraph, X ⊆ V (H), and u, v ∈ V (H) \ X . We say that u and v are
connected under blockage X if there is a path connecting u and v in G(H) that
does not cross any element of X .

In this section, we will consider only hypergraphs and hence if we refer to,
say H , as a tree, we mean that H is a hypergraph that is also a tree. Also, we
call a subhypergraph of H which is a tree a subtree of H .

Let H = (V (H), E(H)) be a hypergraph and k ≥ 1 an integer. We denote
the invisible fugitive and k marshals game on H by InvMar(H, k). A position
in this game is a pair (W, X) where W is a subset of V (H) which indicates the
set of contaminated nodes, i.e., the set of nodes that can possibly harbor the
fugitive, and X is a subset of at most k hyperedges of E(H) which indicates the
positions of the marshals. The initial configuration of the game is (V (H), ∅).

Let (Wi, Xi) be the position in the i-th round of the game. A move in the
game consists in changing the location of the marshals to a new set Xi+1 of
hyperedges. The set of contaminated nodes after the move is Wi+1 = W ′

i+1 \
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⋃
Xi+1 where W ′

i+1 is the set of nodes accessible from Wi under blockage
⋃

Xi∩⋃
Xi+1. That is, when changing the location of the marshals from Xi to Xi+1

the nodes in
⋃

Xi ∩
⋃

Xi+1 are blocked, i.e, the fugitive cannot run through
them. At a given position, a node is cleared if it is not contaminated. The goal
of the game is to clear simultaneously all nodes, i.e, to reach a configuration of
the form (∅, X). Formally, we define a (winning) strategy for the game on H
as a sequence (Wi, Xi), i = 1, . . . , m of positions where W1 = V (H), X1 = ∅,
Wm = ∅ and for every i = 2, . . . , m, |Xi| ≤ k and Wi = W ′

i \
⋃

Xi where W ′
i is

the set of nodes accessible from Wi−1 under blockage
⋃

Xi−1 ∩
⋃

Xi.
In the monotone version of the game, it is required that the set of cleared

nodes increases monotonically, that is, if (W, X) and (W ′, X ′) are two successive
positions of the game then W ′ ⊆ W . We say that a hyperedge e of H is cleared
at position (W, X) if W ∩ e = ∅. In the connected version of the game it is
required that, at every round, the subhypergraph of H constituted by the cleared
hyperedges is connected. We shall call strategies for these versions monotone
and connected, respectively (and monotone connected when both restrictions
are applied simultaneously).

For a hypergraph H , let im(H) denote the minimum k such that the mar-
shals have a winning strategy in InvMar(H, k). The corresponding numbers
for the monotone, connected, and connected monotone games are denoted by
mim(H), cim(H), and cmim(H), respectively.

Let H be a tree, let S = (Wi, Xi), i = 1, . . . , m be a connected strategy for H ,
and let e be a hyperedge of H . We say that S is a connected strategy for (H, e)
if, additionally, the hyperedge e is cleared in all rounds of the game (except the
first). Define cim(H, e) to be the minimum number of marshals necessary to
obtain such a strategy. The number cmim(H, e) is naturally defined in a similar
way.

Example 29. Let H be a caterpillar and let e1, e2, . . . , en be an ordering of
its hyperedges such that two consecutive hyperedges share exactly one node.
A unique marshal can clear all nodes of H by just following the previous se-
quence. Furthermore, this strategy is monotone and connected. Hence we have
mim(H) = cim(H) = cim(H, e1) = cmim(H) = cmim(H, e1) = 1.

The invisible fugitive and cops game and its variants are defined analo-
gously with the only difference that cops occupy vertices instead of hyper-
edges. Formally, a position of the InvCop(H, k) game is a pair (W, Y ) where
W, Y ⊆ V (H), and |Y | ≤ k. A winning strategy for this game is a sequence
(Wi, Yi), i = 1, . . . , m of positions where W1 = V (H), X1 = ∅, Wm = ∅ and for
every i = 2, . . . , m, |Yi| ≤ k and Wi = W ′

i \ Yi where W ′
i is the set of nodes

accessible from Wi−1 under blockage Yi−1∩Yi. The numbers ic(H) and mic(H)
are defined similarly to im(H) and mim(H). Observe that there is no difference
between playing the cop game on H or its Gaifman graph. Hence by the results
of [22, 23, 33] we have:

Proposition 30. Let H be a hypergraph and let G be its Gaifman graph. Then
mic(H) = mic(G) = pw(G) + 1.
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5.1. Games on trees

In this subsection, we investigate the parameters im, mim, cim and cmim
for trees. In particular, we will show that the last two parameters essentially
correspond to the cattree parameter of a tree.

Kirousis and Papadimitriou [23], using [26], showed that if G is a graph then
mic(G) = ic(G), which implies that mic(H) = ic(H) for any arbitrary hyper-
graph H . Also, recontamination does not help (i.e., dropping the requirement
of monotonicity never reduces the necessary number of cops) in the variant of
the fugitive and cops game in which the fugitive is visible [35]. However, it
is not clear whether the same holds when cops are replaced by marshals; for
example, recontamination can help in the visible variant of the game with mar-
shals [1]. In this section we show, among other things, that im(H) = mim(H)
and cim(H) = cmim(H) if H is a (hypergraph) tree. The main ideas of the
proofs are inspired by the work on graphs [17, 32].

Let H be a tree an let TH be the set of all trees T such that there is a subtree
E of H with T being cut off by E (for the definition of a tree being cut off, see
Subsection 3.1). For every T ∈ TH , let E be any subtree of H such that T is
cut off by E and define eT to be the hyperedge connecting E to T and vT to be
the only element in V (T )∩ V (E). Notice that eT and vT do not depend on the
choice of E. Let e∗T = eT \ {vT }. Define T ∗ to be the tree obtained from T by
removing vT from V (T ) and replacing eT by e∗T .

Call a node of H a leaf if it is contained in a single hyperedge, and a non-leaf
otherwise. For a subtree E of H and a set X ⊆ TH , we say that a node v ∈ V (E)
is connecting E with X if there is a tree T ∈ X cut off by E such that v = vT .

Before proving the main results of this subsection, we need several technical
lemmas.

Lemma 31. Let H be a tree and let X ⊆ TH be such that every subtree E of H
has at most two leaves connecting it to X. Then there is a subtree of H which
is a caterpillar and has no nodes connecting it to X.

Proof. Assume first that there exists a caterpillar E that has two leaves con-
necting it to X. Then there exists one such that the connecting leaves appear
in opposite extremes, that is, such that its hyperedges can be ordered e1, . . . , en

(n ≥ 1) in such a way that two consecutive hyperedges share one element, and
one of the connecting leaves belongs to e1 and the other to en. One such cater-
pillar is obtained by taking the sequence of hyperedges in the path in E that
connects the two leaves. Now let E′ be an inclusion-wise maximal caterpillar
with connecting leaves appearing in opposite extremes, and let E′′ be the cater-
pillar obtained by adding to E′ all hyperedges (of H) that contain one or the
other connecting leaf of E′. Let us show that E′′ is a required caterpillar. It
follows that every hyperedge e of H that contains a non-leaf of E′′ belongs to
E′′. Indeed, if the non-leaf is a connecting leaf of E′, this follows from the
construction of E′′, whereas in any other case it follows by the maximality of
E′. Hence, if E′′ has a connecting node v then it certainly needs to be a leaf
of E′′. It follows that v 6∈ V (E′) since otherwise E′ would have three different
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leaves connecting it to X. But if v belongs to an extreme e of E′′, the caterpillar
obtained by adding e to E′ would contradict the maximality of E′. Thus, E′′

is the required caterpillar.
Now assume that every caterpillar in H contains at most one leaf connecting

it to X. Again, if there exists one that contains such a leaf then we can assume
that this leaf appears in one of the extremes. Pick again a maximal E′ with this
property and construct E′′ by adding to E′ all hyperedges containing the leaf.
It follows in a similar way to the previous case that E′′ has no leaves connecting
it to X.

Lemma 32. Let H be a tree, let S = (Wi, Xi), i = 1, . . . , m be a strategy for
InvMar(H, k), and let T ∈ TH.

1. Assume that im(T ∗) = k and l is a round (2 ≤ l ≤ m) such that V (T ∗) ⊆
Wl−1. Then there exists some round l ≤ i ≤ m, such that Xi contains k
different hyperedges from T .

2. Assume that cim(T ∗, e∗T ) ≥ k, S is connected and that there is some round
2 ≤ l ≤ m such that V (T ∗) ⊆ Wl−1 and eT ∩ Wi = ∅ for all l ≤ i ≤ m.
Then there exists some round l ≤ i ≤ m, such that Xi contains k different
hyperedges from T .

Proof. Define S∗ to be the sequence (W ∗
i , X∗

i ), i = l, . . . , m where X∗
i = {e ∩

V (T ∗) | e ∈ Xi} and W ∗
i is the set of nodes of T ∗ contaminated in round

i, i = l, . . . , m, according to the rules of the game.
(1) It is enough to show that S∗ is a strategy for T ∗. If B is the blockage

from round i − 1 to round i according to S then the blockage from round i − 1
to i according to S∗ is B ∩ V (T ∗). It follows that W ∗

i ⊆ Wi for all i = l, . . . , m,
and so W ∗

m = ∅.
(2) It is enough to show that S∗ is a connected strategy for (T ∗, e∗T ). It

follows from the assumptions and from the fact that W ∗
i ⊆ Wi that e∗T is cleared

in every round. It remains to show that S∗ is connected.
Towards a contradiction, assume that, at some round i, the set of cleared

hyperedges by S∗ is not connected. Since e∗T is cleared and we can choose a path
v0e1v1e2 . . . envn such that v0 ∈ e∗T and vn is cleared at round i while vk−1 is
not. We shall show that this implies that strategy S is not connected at round
i, contradicting the assumptions. In particular we shall show that at round i,
according to S, v0 and vn are cleared whereas vn−1 is not. The fact that v0 is
cleared follows from the fact that eT is cleared at round i whereas the fact that
vn−1 is not cleared follows from W ∗

i ⊆ Wi. In order to show that vn is cleared,
according to S, at round i we notice that vn shares an hyperedge, namely en,
with a node which is contaminated according to S∗, namely vn−1. Hence the
only reason why vn can possibly be cleared (according to S∗) at round i is
because a marshal occupies some edge e containing vn. By the definition of S∗

this implies that, in S, there is a marshall seating in some hyperedge e′ with
e′ ∩ V (T ∗) = e (in fact, since vn cannot be in e∗T we have that e = e′, but this
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does not play any role). Since vn ∈ e′ we conclude that vn is cleared according
to S at round i.

Lemma 33. Let H be a tree, let E be a subtree of H, and let T1, T2, T3 be cut
off by E, such that vT1 , vT2 , vT3 are leaves of E. Then:

1. If im(H) ≤ k and im(T ∗
j ) = k for j = 1, 2, 3, then |{vT1 , vT2 , vT3}| ≤ 2.

2. If cim(H) ≤ k and cim(T ∗
j , e∗Tj

) ≥ k for j = 1, 2, 3, then |{vT1 , vT2 , vT3}| ≤
2.

3. If cim(H, e) ≤ k for some hyperedge e of E and cim(T ∗
j , e∗Tj

) ≥ k for
j = 1, 2, then vT1 = vT2 .

Proof. All proofs are by contradiction:
(1) Assume that vT1 , vT2 , vT3 are all different. Let (Wi, Xi), i = 1, . . . , m be

a strategy for InvMar(H, k). There exists a round in which all the vertices of
(at least) two of the three trees are completely cleared. Choose n ∈ {1, . . . , m}
to be minimal with such property and assume without loss of generality that
the trees cleared are T1 and T2. For j = 1, 2 let lj be minimal with the property
that V (Tj) contains cleared nodes in every round lj ≤ i ≤ n.

Assume without loss of generality that l1 ≤ l2. It follows from the fact that
im(T ∗

2 ) = k and Lemma 32(1) that there exists some round l2 ≤ i ≤ n in which
all the marshals sit on hyperedges of T2. By the minimality of n there is, at
round i − 1, some contaminated node v ∈ V (T1) ∪ V (T3). Since E is connected
and vT2 is a leaf of E which is different from both vT1 and vT3 , it follows that,
during the transition from round i − 1 to round i, there is a non-blocked path
between vT1 and vT3 , and hence a non-blocked path connecting v with any node
in V (T1). Hence every node in V (T1) is contaminated at round i contradicting
the definition of l1.

(2) Assume that vT1 , vT2 , vT3 are all different and the strategy (Wi, Xi), i =
1, . . . , m is connected. Hence there exists a round in which all the vertices of
(at least) two of the three trees are completely clear. Choose n to be minimal
with such property and assume without loss of generality that T1 and T2 are
cleared. For j = 1, 2, let lj be minimal with the property that eTj

is cleared in
every round lj ≤ i ≤ n.

Assume first that l1 < l2. Since eT1 is cleared in round l2 − 1 and eT2 is not,
it follows by connectivity of the strategy that none of the hyperedges of T2 is
cleared at round l2 − 1. From the fact that cim(T ∗

2 , e∗T2
) ≥ k and Lemma 32(2)

we get that there exist some round l2 ≤ i ≤ n in which all marshals sit on
hyperedges of T2. Since n is minimal, there is, in round i−1, some contaminated
node v ∈ V (T1) ∪ V (T3). Since E is connected and vT2 is a leaf of E which is
different from both vT1 and vT3 , it follows that, during the transition from round
i− 1 to round i, there is a non-blocked path connecting v with any node in eT1 .
Hence eT1 is not cleared in round i contradicting the definition of l1. The case
l2 < l1 is symmetric.
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The case l1 = l2 follows very similarly. Neither of eT1 , eT2 is cleared in round
l1−1. Therefore, again by connectivity, there is at most one j ∈ {1, 2} such that
Tj has a hyperedge cleared in round l1 − 1. Assume without loss of generality
that j = 1. It follows from Lemma 32(2) that there exists some round l2 ≤ i ≤ n
in which all the marshals sit on hyperedges of T2. From here the proof proceeds
as in the previous case.

(3) Let (Wi, Xi), i = 1, . . . , m be a connected strategy for (H, e), let n be the
first round in which at least one of the trees, say T1, is entirely cleared. Define
l1 to be minimal with the property that eT1 is cleared in every round l1 ≤ i ≤ n.
Since e is cleared at round l1 − 1 it follows by connectivity that none of the
hyperedges of T1 is cleared at round l1 − 1 and, henceforth, there is some round
l1 ≤ i ≤ n in which all marshals sit on hyperedges of T1. If vT1 6= vT2 then, by
the minimality of n, T2 contains, in round i, some contaminated node v which
would allow to recontaminate, via vT2 and E, any node in e, a contradiction.

Let H = (V, E) and H ′ = (V, E′) be trees with the same set of nodes.
We say that H is obtained by decorating H ′ if E = E′ or E is obtained by
adding singleton hyperedges to E′. A hypergraph obtained by decorating a
caterpillar or a k-cattree will be called a decorated caterpillar or decorated k-
cattree, respectively. If e is a hyperedge of H ′ such that (H ′, e) is a k-cattree
then we also say that (H, e) is a decorated k-cattree. The following fact can be
easily derived from Definition 5 by induction on k.

Remark 34. For any k, every decorated k-cattree is a (k + 1)-cattree.

Notice that, strictly speaking, one cannot capture k-cattrees by means of
games. Indeed, it is not difficult to see that if H is obtained by decorating a
caterpillar H ′ then H is not necessarily a caterpillar but im(H) = 1 as the same
clearing sequence for H ′ will also work in H . In the rest of this section we show
that, besides this technical point, the connected game with invisible fugitive and
k marshals captures k-cattrees.

Lemma 35. Let H be a tree, and e its hyperedge.

1. If im(H) = 1 then H is a decorated caterpillar.

2. If cim(H, e) = 1 then (H, e) is a decorated caterpillar.

Proof. (1) Define X to be the set consisting of all T ∈ TH such that im(T ∗) = 1
(clearly, it is not possible that im(T ∗) > 1). By Lemma 33(1), set X satisfies the
assumptions of Lemma 31. It now follows from Lemma 31 that there exists some
caterpillar E such that for every T cut off by E, im(T ∗) = 0. Consequently
every tree T in TE has only one (singleton) hyperedge and, henceforth, H is
obtained by decorating E.

(2) We need to show that H is obtained by decorating a caterpillar E that
has e as an extreme. Pick any sequence e1, . . . , en of hyperedges of H with e1 =
e, where e2, . . . , en are not singletons and such that every pair of consecutive
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hyperedges share exactly one node. Assume that n is maximal and let us denote
by E the subhypergraph of H constituted by the hyperedges in the ordering.
The claim follows if we can prove that H is obtained by decorating E. Assume,
for a contradiction, that this is not the case. Then there exists a tree T cut
off by E which has a non-singleton hyperedge. It follows that vT is a leaf of
E, since otherwise we could add eT to E obtaining a caterpillar with one extra
hyperedge. Let i ∈ {1, . . . , n} be such that ei contains vT and let j ≥ i be
maximal with the property that ej ∩ ei−1 6= ∅. If j = n then the sequence
e1, . . . , ei−1, ei+1, . . . , en, ei, eT contradicts the maximality of n. Otherwise let
E′ be the subhyperegraph constituted by e1, . . . , ej . Clearly T is cut off by E′

as well. Also there is a tree T ′ cut off by E′ containing ej+1. By the maximality
of j, vT ′ is a leaf of E′. Furthermore we have that vT 6= vT ′ because vT is a leaf
of E whereas vT ′ is not. This contradicts Lemma 33(3) and we are done.

Together with Example 29, Lemma 35 implies the following.

Corollary 36. For any tree H, H is a decorated caterpillar if and only if any
(equivalently, each) of parameters im(H), mim(H), cim(H), cmim(H) is equal
to 1.

We are now in a situation to show that im(H) = mim(H) for every tree H .
This is done via a structural characterization of the trees with im(H) ≤ k. This
result is not used in our study of the CSP in this paper, but it will complete
our treatment of the invisible fugitive and k marshals game on trees.

Recall that, if T is a tree cut off by some subtree in H , then T ∗ is defined
to be the tree obtained from T by removing vT from V (T ) and replacing eT by
e∗T = eT \ {vT }.

Definition 37. Let H be a tree and let k ≥ 1. We say that H is a weak
k-cattree if:

1. H is a caterpillar, or

2. k > 1 and there is subtree E of H which is a caterpillar, and, for every
subtree T cut off by E, T ∗ is a weak (k − 1)-cattree.

The difference between the above definition and the definition of a k-cattree
is that here the tree T does not have to be attached to E by an extreme and
that the node connecting T to E is removed before computing the parameter
of the tree cut off. It can be seen directly that every k-cattree is also a weak
k-cattree, and this also trivially follows from Theorems 38 and 40. It will follow
from Proposition 42 that every weak k-cattree is a 2k-cattree.

We say that a decorated weak k-cattree is a tree obtained by decorating a
weak k-cattree.

Theorem 38. Let H be a tree and k ≥ 1. The following are equivalent:

1. im(H) ≤ k
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2. H is a decorated weak k-cattree.

3. mim(H) ≤ k

Proof. (1 ⇒ 2) The proof is by induction on k. The case k = 1 is given in
Lemma 35. Now let k > 1 and assume that im(H) = k. Define X to be the
set consisting of all T ∈ TH such that im(T ∗) = k. By Lemma 33(1), this set
X satisfies the assumptions of Lemma 31. It now follows from Lemma 31 that
there exists some caterpillar E such that, for every T cut off by E, we have
im(T ∗) ≤ k − 1. By induction hypothesis, every such T ∗ is a decorated weak
(k−1)-cattree, which implies that T is a decorated weak (k−1)-cattree as well.
Define T ′ to be the weak (k−1)-cattree from which T is obtained by decorating.
Finally, H is obtained by decorating the weak k-tree obtained from E and T ′,
where T runs through TE, according to Definition 37.

(2 ⇒ 3) The implication will follow if we can prove it for the case when H
is a weak k-cattree. The proof is by induction on k. The case k = 1 is given by
Example 29. Now let k > 1. Let E be the caterpillar given by the definition of
a weak k-cattree and let e1, . . . , en be an ordering of its hyperedges such that
two consecutive hyperedges share one node. Place initially one marshal in e1.
While keeping the marshal on e1, use the remaining k − 1 marshals to clear all
nodes that belong to every tree T cut off by E such that vT ∈ e1. This is done
processing all such trees one by one. If T is such a tree, we know that there
exists a monotone strategy (Wi, Xi), i = 1, . . . , m that clears T ∗ using only k−1
marshals. By using such sequence (with added e1 and with e∗T replaced by eT

throughout) for every T , we can clear all such trees T . Once this is done, we
move the marshal from e1 to e2 and continue in the same fashion to obtain a
monotone strategy for the whole H .

The implication (3 ⇒ 1) is trivial.

The proof for the connected variant is slightly more involved. We first need
the following intermediate result.

Proposition 39. Let H be a tree, let e be a hyperedge of H, and k ≥ 1. Then
the following are equivalent:

1. cim(H, e) ≤ k.

2. (H, e) is a decorated k-cattree.

3. cmim(H, e) ≤ k.

Proof. Implication (3 ⇒ 1) is trivial.
(1 ⇒ 2). The proof goes by induction on k. The case k = 1 follows from

Lemma 35.
For induction step, we claim that there exists some caterpillar E with the

extreme e such that for every tree T cut off by E, cim(T ∗, e∗T ) ≤ k−1. Construct
a strictly increasing sequence of subtrees of H in the following way. Set E1 = e.
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For i ≥ 1, while there is a tree Ti cut off by Ei such that cim(T ∗
i , e∗Ti

) ≥ k,
choose such tree arbitrarily and define Ei+1 to be the hypergraph obtained by
adding to Ei all hyperedges in H that contain vTi

. Assume that E1, . . . , En is
a longest such sequence. If we can show that vTi

6∈ V (Ei−1) for all i ≥ 2, it will
follow that each Ei is a caterpillar and that E = En has the desired property.
Assume, for contradiction, that vTi

∈ V (Ei−1) for some i ≥ 2. Choose the
smallest i with this property and then the smallest j < i such that vTi

∈ V (Ej).
Note that, by the choice of i and j, we have that vTi

and vTj
must be leaves of

Ej . Then Lemma 33(3) implies that vTi
= vTj

, and hence, by construction, Ei

contains all hyperedges of H containing vTi
. But this contradicts the choice of

Ti as being cut off by Ei, so we do have our caterpillar E.
It follows by induction hypothesis that, for every tree T cut off by E, (T ∗, e∗T )

is a decorated (k − 1)-cattree. This implies that (T, eT ) is a decorated (k −
1)-cattree as well. Let (T ′, eT ) be the (k − 1)-cattree from which (T, eT ) is
obtained by decorating. Hence, (H, e) can be obtained by decorating the k-
cattree obtained from E and (T ′, eT ), T ∈ TE according to Definition 5.

(2 ⇒ 3). The proof of this part is very similar to the direction (2 ⇒ 3)
of Theorem 38. It suffices to show it in the case that (H, e) is a k-cattree.
We shall show, by induction on k, that there is a hyperedge e of H such that
cmim(H, e) ≤ k. The case k = 1 follows from Example 29. Now let E be
the caterpillar containing e as an extreme that is guaranteed to exist by the
definition of a k-cattree. Let e = e1, . . . , en be an ordering of its hyperedges
such that two consecutive hyperedges share one node. There is one marshal that
performs exactly the sequence e1, . . . , en. Before leaving ei, the remaining k− 1
marshals are used to clear all subtrees cut off by E that share some element
with ei, one by one. If T is any such subtree and eT is the edge of T connecting
T to ei then, by induction hypothesis, T can be cleared with k − 1 marshals
in such a connected monotone way so that eT is cleared in every round. This
guarantees that the whole strategy for H is connected and e is always cleared.

Theorem 40. Let H be a tree and k ≥ 1. Then the following are equivalent:

1. cim(H) ≤ k.

2. H is a decorated k-cattree.

3. cmim(H) ≤ k.

Proof. Implication (3 ⇒ 1) is trivial, while (2 ⇒ 3) follows from Proposition 39
because, it follows easily from the definition that H is a decorated k-cattree if
(H, e) is such for some hyperedge e.

(1 ⇒ 2). The case k = 1 follows from Example 29. Assume k > 1. Define
X to be the set consisting of all T ∈ TH such that cim(T ∗, e∗T ) ≥ k. By
Lemma 33(2), this set X satisfies the assumptions of Lemma 31. It now follows
from Lemma 31 that there exists a caterpillar E such that, for every tree T cut
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off by E, cim(T ∗, e∗T ) ≤ k − 1. It follows by Proposition 39 that (T ∗, e∗T ) is
a decorated (k − 1)-cattree, which implies that (T, eT ) is a decorated (k − 1)-
cattree as well. Let (T ′, eT ) be the (k−1)-cattree from which (T, eT ) is obtained
by decorating. Hence (H, e) is a decorated k-cattree (for any extreme e of
E) as it can be obtained by decorating the k-cattree obtained from E and
(T ′, eT ), T ∈ TE according to Definition 5.

A close inspection to the proof of Theorem 38 reveals that every decorated
weak k-cattree has a monotone strategy in which only one marshal moves in
every round. Also, the proof of Proposition 39 shows that every decorated k-
cattree has a monotone connected strategy in which only one marshal moves at
a time. This implies that, for trees, there is not any gain in allowing several
marshals to move at once under any of the variants of the invisible game with
marshals considered in this paper. For hypergraphs that are not trees this is not
longer true. For example, it is easy to see that the hypergraph H with V (H) =
{1, . . . , 8} and E(H) = {{1, 2, 3}, {4, 5, 6}, {1, 4, 7}, {2, 5, 8}, {3, 6}, {7, 8}} has
im(H) = 2 (the two marshals occupy the first pair of hyperedges first, and
then simultaneously move to the second pair), but there is no strategy for H
with 2 marshals when we require that only one marshal moves at once (since
every transition between rounds would leave at least one of the nodes 1,2,4,5
unblocked). This is again one aspect in which marshals and cops differ substan-
tially, as in almost every conceivable variant with cops, and certainly the ones
considered in this paper, there is not any gain in moving several cops at once.

5.2. Pathwidth and cattrees

From Proposition 30 and Theorem 40, we know that the mic and cmim
parameters of a hypergraph are connected with pathwidth (of Gaifman graph)
and cattree parameters, respectively. The goal of this subsection is to link them
between themselves (which we achieve in Corollary 43), thus proving Theorem 6.

Proposition 41. Let H be a hypergraph and let r be the maximum among the
cardinality of its hyperedges. Then mim(H) ≤ mic(H) ≤ r · mim(H).

Proof. (mim(H) ≤ mic(H)) Let k ≥ 1 and let (Wi, Yi), 1 ≤ i ≤ m be a winning
strategy in the monotone game with k cops for H . Every hyperedge e must
be contained entirely in some set Yi, 1 ≤ i ≤ m because otherwise the fugitive
could always hide in e. Let the index of e be the minimal i such that e ⊆ Yi.
For any node v, arbitrarily pick one hyperedge ev with minimal index among
those containing v, and say that the index of v is that of the edge ev. Observe
that we can assume that if v is a node and i is its index then v does not appear
in any Yj with j < i as otherwise we could for every j < i remove v from Yj

and add it to Wj obtaining again a winning strategy.
It is not difficult to verify that (W ′

i , Xi), i = 1, . . . , m with Xi = {ev | v ∈ Yi}
(and sets W ′

i determined by the rules of the game) is a strategy in the monotone
game with k marshals. Indeed, by the construction of the sequence (W ′

i , Xi), i =
1, . . . , m we have Yi ⊆

⋃
Xi for every i = 1, . . . , m and hence this sequence will
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clear all nodes. It remains to show that no node can be recontaminated once it
has been cleared. To this end, observe that when a marshal is first placed on a
hyperedge e, say in round i, then by the choice of e, we have that e ⊆ Yi. Then
monotonicity of the strategy for the fugitive and cops game guarantees that no
node in e will be contaminated again.

(mic(H) ≤ r · mim(H)) Let k ≥ 1 and let (Wi, Xi), i = 1, . . . , m be a
strategy in the monotone game with k marshals for H . Then, the sequence
(Wi, Yi), 1 ≤ i ≤ m with Yi =

⋃
Xi (and the same sets Wi) for all i is a strategy

for the monotone game with r · k cops.

Proposition 42. Let H be a tree, let e be a hyperedge of H, and let k ≥ 1. If
im(H) ≤ k then cmim(H, e) ≤ 2k.

Proof. If im(H) ≤ k then, by Theorem 38, H is a decorated weak k-cattree.
Note that it is enough to prove the proposition assuming that H is a weak k-
cattree, since the same strategy would always work in the decorated case. We
prove it by induction on k.

The base case k = 1 (that is, when H is a caterpillar) follows easily. If e is an
extreme of H then cmim(H, e) = 1 and we are done. Otherwise, let e1, . . . , en

be an ordering of the hyperedges of H such that two consecutive nodes share
exactly one node and let 1 ≤ i ≤ n such that e = ei. Place one marshal in ei

and while keeping this marshal in ei use the other marshal to clean one ”half”
of the caterpillar by playing it along the sequence ei+1, . . . , en. At this point
clear the other half by moving the marshal that was originally kept in ei to
ei−1, ei−1, . . . , e1 successively.

Assume k > 1 and fix an arbitrary hyperedge e of H . Let E be the caterpillar
given by Definition 37. If T is any tree cut off by E then T ∗ is a weak (k − 1)-
cattree, which implies that T is a weak (k − 1)-cattree as well. Hence, by
induction hypothesis, cmim(T, e′) ≤ 2k − 2 for any hyperedge e′ of T .

Let e1, e2, . . . , en be an ordering of the hyperedges of E such that two con-
secutive hyperedges share one node.

Assume first that e is in E, say e = ei for some i. Place a marshal in ei

and for every subtree T cut off by E such that vT ∈ ei, clear T in a connected
manner with 2k− 2 marshals according to the connected monotone strategy for
(T, eT ). Remove all 2k − 2 marshals from hyperedges of T after all nodes in T
have been cleared. This sort of operation, that of clearing all trees cut off by
E that share some node with a given hyperedge ej of E, will be referred to as
clearing all side routes to ej . Once all side routes to ei have been cleared, place
a new marshal in ei+1, clear all side routes to ei+1, move the marshal in ei+1 to
ei+2 and proceed in this way until there is a marshal in en and all side routes
to en have been cleared. Move the marshal from en to ei−1 and start again the
process this time walking back from ei−1 to e1. The total number of marshals
required is 2k.

If e is not in E then it must belong to a subtree T cut off by E that can
be cleared with 2k − 2 marshals in a connected monotone manner starting at
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e. During this process, once the edge eT has been cleared, we keep an extra
marshal in it to avoid recontamination from the rest of H until T has been
completely cleared. Once T is cleared, move the marshal in eT to a hyperedge
ei in E with which it shares a node. From this point proceed as in the previous
case.

Corollary 43. Let H be a tree and let r be the maximum of the cardinality of
its hyperedges. Then 1

2 · cmim(H) ≤ mic(H) ≤ r · cmim(H).

Proof. The inequality (mic(H) ≤ r · cmim(H)) is a consequence of Proposi-
tion 41 and the obvious fact that mim(H) ≤ cmim(H). Now, for an arbitrary
hyperedge e of H , we have

1

2
· cmim(H) ≤

1

2
· cmim(H, e) ≤ im(H) = mim(H) ≤ mic(H)

where the first inequality is trivial, the second follows from Proposition 42, and
the last from Proposition 41, while the equality follows from Theorem 38.

6. Conclusion

We have characterised, in terms of algebra, logic, and combinatorics, struc-
tures B which have an obstruction set consisting of trees of bounded pathwidth.
As we mentioned after Theorem 8, these structures provide a new class of prob-
lems CSP(B) belonging to the complexity class NL. Admittedly, our algebraic
characterisation (k-layered m-ABS polymorphisms) is not easy to use. How-
ever, we hope that this type of operations may lead to identifying a new type of
operations that would be useful for general results putting (co-)CSPs in linear
Datalog, in the same way as the operations described in [31] led to a description
of (co-)CSPs definable in Datalog [4].

Obviously, k-cattree duality for a structure implies both tree duality and
bounded pathwidth duality. It is an open question whether the converse holds,
that is, whether every structure that has both tree duality and bounded path-
width duality also has an obstruction set consisting of trees of bounded path-
width.
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[33] R.H. Möhring. Graph problems related to gate matrix layout and PLA
folding. Comput.Suppl., 7:17–51, 1990.
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[36] Cs. Szabó and L. Zádori. Idempotent totally symmetric operations on finite
posets. Order, 18:39–47, 2001.

[37] L. Zádori. Posets, near-unanimity functions and zigzags. Bulletin of the
Australian Mathematical Society, 47:79–93, 1993.

[38] L. Zádori. Monotone Jónsson operations and near unanimity functions.
Algebra Universalis, 33(2):216–236, 1995.

39


