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Abstract

An instance of the (finite-)Valued Constraint Satisfaction
Problem (VCSP) is given by a finite set of variables, a finite
domain of values, and a sum of (rational-valued) functions,
each function depending on a subset of the variables. The
goal is to find an assignment of values to the variables that
minimises the sum.

We study (assuming that PTIME ̸= NP) how the
complexity of this very general problem depends on the
functions allowed in the instances. The case when the
variables can take only two values was classified by Cohen
et al.: essentially, submodular functions give rise to the only
tractable case, and any non-submodular function can be
used to express, in a certain specific sense, the NP-hard Max
Cut problem.

We investigate the case when the variables can take
three values. We identify a new infinite family of conditions
that includes bisubmodularity as a special case and which
can collectively be called skew bisubmodularity. By a recent
result of Thapper and Živný, this condition implies that the
corresponding VCSP can be solved by linear programming.

We prove that submodularity with respect to a total or-

der and skew bisubmodularity give rise to the only tractable

cases, and, in all other cases, again, Max Cut can be ex-

pressed. We also show that our characterisation of tractable

cases is tight, that is, none of the conditions can be omit-

ted. Thus, our results provide a new dichotomy theorem in

constraint satisfaction research, and lead to a whole series

of intriguing open problems in submodularity research.

1 Introduction

What are the classes of discrete functions that admit an
efficient minimisation algorithm? To answer this kind
of general question in a meaningful way, one needs to
fix a formal setting. One popular general setting con-
siders classes of set functions (also known as pseudo-
Boolean functions) f : {0, 1}n → R, or, more generally,
classes of functions f : Dn → R with a fixed finite set
D, and the efficiency is measured in terms of n. One
can consider the model in which functions are repre-
sented by a value-giving oracle, or the model where the
functions are represented explicitly, but succinctly —
say, as a sum of functions of small arity. Both mod-
els are actively studied (see, e. g. [17]). For example,

submodular set functions can be efficiently minimised
in the value-oracle model, while supermodular set func-
tions cannot [18, 21, 32, 39], the standard argument for
the latter fact coming from the hardness of the Max
Cut problem which can be considered as a supermod-
ular set function minimisation problem with explicitly
represented objective function — in fact, a sum of bi-
nary supermodular functions (see Example 2). In this
paper, we contribute towards the answer to the above
question for functions f : Dn → Q in the explicit rep-
resentation model, by using the paradigm of the valued
constraint satisfaction problem (VCSP) [11].

The constraint satisfaction problem (CSP) provides
a framework in which it is possible to express, in a
natural way, many combinatorial problems encountered
in computer science and AI [12, 14, 16]. An instance
of the CSP consists of a set of variables, a domain
of values, and a set of constraints on combinations
of values that can be taken by certain subsets of
variables. The aim is then to find an assignment of
values to the variables that satisfies the constraints.
There are several natural optimisation versions of CSP:
Max CSP (or Min CSP) where the goal is to find
the assignment maximising the number of satisfied
constraints (or minimising the number of unsatisfied
constraints) [10, 14, 22, 23], problems like Max-Ones
and Min-Hom where the constraints must be satisfied
and some additional function of the assignment is to be
optimised [14, 24, 40], and, the most general version,
VCSP where each combination of values for variables
in a constraint has a cost and the goal is to minimise
the aggregate cost [7, 11]. Thus, an instance of the
VCSP amounts to minimising a sum of functions, each
depending on a subset of variables. If infinite costs
are allowed then VCSP can model both feasibility and
optimisation aspects and so generalises all the problems
mentioned above [7, 11]. We will however allow only
finite costs to concentrate on the optimisation aspect.
Note that the VCSP has also been studied in various
branches of computer science under different names such
as Min-Sum, Gibbs energy minimisation, and Markov
Random Fields (see, e. g. [13, 43]). We study the
complexity of solving VCSPs to optimality.



We assume throughout the paper that PTIME ̸=
NP. Since all the above problems are NP-hard in full
generality, a major line of research in CSP tries to iden-
tify the tractable cases of such problems (see [14, 15]),
the primary motivation being the general picture rather
than specific applications. The two main ingredients of
a constraint are (a) variables to which it is applied and
(b) relations/functions specifying the allowed combina-
tions of values or the costs for all combinations. There-
fore, the main types of restrictions on CSP are (a) struc-
tural where the hypergraph formed by sets of variables
appearing in individual constraints is restricted [19, 33],
and (b) language-based where the constraint language,
i. e. the set of relations/functions that can appear in con-
straints, is fixed (see, e. g. [6, 12, 14, 16]). The ultimate
sort of results in these directions are dichotomy results,
pioneered by [38], which characterise the tractable re-
strictions and show that the rest are as hard as the
corresponding general problem (which cannot be gen-
erally taken for granted). The language-based direc-
tion is considerably more active than the structural one,
there are many partial language-based dichotomy re-
sults, e. g. [4, 5, 11, 14, 22, 23, 27, 40], but many cen-
tral questions are still open. In this paper, we study
language-based restrictions for VCSP.

Related Work. Since VCSP is a very general
problem and relatively new to the CSP dichotomy re-
search, only a couple of earlier complexity classification
results are known. The following cases have been classi-
fied: when the domain contains only two values [11],
when the language contains all unary functions [27],
when the domain is small and the language contains
only 0-1-valued functions [22, 23]. On the hardness
side, simulation of Max Cut has been a predominant
idea. On the algorithmic side, most tractability results,
e. g. [9, 10, 11, 23, 26, 29, 30], are based on various
submodularity-like conditions. An adaption to VCSP of
ideas from the algebraic approach to the CSP [6, 12] re-
sulted in submodularity-inspired, but rather more gen-
eral and abstract, algebraic properties called multimor-
phisms [11] and then, even more general, fractional poly-
morphisms [7, 8], which are certain families of opera-
tions of the same arity.

Fractional polymorphisms are known to be able
to characterise all tractable constraint languages for
VCSP [7, 8], and they have been recently used to char-
acterise constraint languages such that the correspond-
ing VCSP can be solved by the basic LP (linear pro-
gramming) relaxation [28, 41]. Finally, Chapters 6 and
7 of [37] (where VCSP is called generalised CSP, or
GCSP) give a condition such that, for constraint lan-
guages satisfying this condition, the basic SDP (semidef-
inite programming) relaxation finds the optimal value

for each VCSP instance, while this task is UG-hard for
all other languages. It should be noted, though, that
the condition in question is not tangible except in some
cases when fractional polymorphisms can be used (see
Theorem 2.5).

Our work is concerned with classifying exact solv-
ability of VCSPs. There is plenty of research in approx-
imability ofMax CSPs and VCSPs (e. g. [3, 14, 25, 37]),
especially since the unique games conjecture (UGC) [25]
concerns a special case of Max CSP. In fact, it is shown
in [37] how to optimally approximate any VCSP assum-
ing the UGC.

One of the main technical tools for identifying
tractabililty in the VCSP, fractional polymorphisms, is a
generalisation of submodularity. Submodular functions
are a key concept in combinatorial optimisation [18, 32,
39], and their algorithmic aspects are being very actively
studied (see e. g. [17, 21, 34, 35]).

Contributions. We classify the complexity of
VCSPs with a fixed constraint language in the case of a
three-element domain (see Theorem 3.3).

This result generalises the classification for the
Boolean case [11] and the complexity (though not the
approximability) classification for the case of a three-
element domain and 0-1-valued functions from [22]. It
is known in CSP research that generalising a dichotomy
result from 2-element domains to 3-element domains
is a crucial step in understanding the general picture
and verifying the suitability of technical tools [4, 22].
Our result suggests a new possible characterisation
of tractable VCSPs, which we discuss in Section 4.
Moreover, we believe that the techniques used in this
paper can be further extended to eventually lead to the
full dichotomy for VCSPs on all finite domains. One
interesting feature of our classification is that it is the
first dichotomy result in CSP research when infinitely
many conditions are definitely necessary to characterise
tractable constraint languages in a version of CSP with
a fixed domain.

It follows from our classification and [28, 41] that
each tractable VCSP on a three-element domain can
be solved by the basic LP relaxation. The classifica-
tion raises the question whether other techniques, for
example, the basic SDP relaxation, are ever necessary
for solving VCSPs to optimality. This also raises the
question whether tractable VCSPs can always be char-
acterised by fractional polymorphisms of small arity, say
arity 2 (when infinite values are allowed, fractional poly-
morphisms of arity 3 are necessary [11]). On the hard-
ness side, our classification suggests that the ability to
explicitly express Max Cut might be a unique general
reason for a VCSP to be hard, just as the ability to
explicitly express Not-All-Equal-Sat is conjectured



to be the only reason for a CSP with a fixed constraint
language to be hard [6, 16].

Thapper and Živný asked [41] whether the VCSPs
solvable by the basic LP relaxation can be characterised
by a fixed-arity multimorphism. We answer this ques-
tion negatively (see Proposition 3.5). Kolmogorov re-
cently showed [28] that such VCSPs are characterised
by binary (commutative) fractional polymorphisms.

We identify, for each 0 < α < 1, a new class of
functions on {−1, 0, 1}n which we call α-bisubmodular.
The ordinary bisubmodularity [1, 35, 36] would be 1-
bisubmodularity in this notation. The new functions
play a crucial role in our classification. Our results raise
many new open questions in submodularity research
which we discuss in Section 4.

2 Preliminaries

2.1 Valued Constraints Let D be a finite set. Let
Q≥0 denote the set of all non-negative rational numbers.

Let F
(m)
D denote the set of all functions fromDm toQ≥0,

and let FD =
∪∞

m=1 F
(m)
D . A valued constraint language

on D is simply a subset of FD.

Definition 1. Let V = {x1, . . . , xn} be a set of vari-
ables. A valued constraint over V is an expression of

the form g(x) where x ∈ V m and g ∈ F
(m)
D . The number

m is the arity of the constraint.
An instance I of VCSP is a function

(1) fI(x1, . . . , xn) =

q∑
i=1

wi · fi(xi)

where, for each i = 1, . . . , q, fi(xi) is a valued constraint
over VI = {x1, . . . , xn} and wi ∈ Q>0 is a weight. The
goal is to find a mapping φ : VI → D that minimises
fI . Let Opt(I) denote the set of all optimal solutions
to I.

For a valued constraint language Γ ⊆ FD, let
VCSP(Γ) denote the class of all VCSP instances in
which every valued constraint uses a function from Γ.

We assume that each fi in a VCSP instance is
given by its full table of values. As usual in this line
of research, we say that a language Γ is tractable if
VCSP(Γ′) is tractable for each finite Γ′ ⊆ Γ, and it
is NP-hard if VCSP(Γ′) is NP-hard for some finite
Γ′ ⊆ Γ.

Example 1. (Submodularity [18, 32, 39]) A func-
tion {0, 1}n → Q is called submodular if

f(a∨b)+f(a∧b) ≤ f(a)+f(b) for all a,b ∈ {0, 1}n.

Here, ∨ and ∧ denote the standard binary Boolean op-
erations acting component-wise. If Γ ⊆ F{0,1} consists

of submodular functions then VCSP(Γ) is tractable [11,
18, 32, 39]. A function f is called supermodular if the
function −f is submodular.

Example 2. (Max Cut) In the Max Cut problem,
one needs to partition the vertices of a given edge-
weighted graph into two parts so as to maximise the
total weight of edges with endpoints in different parts.
This problem is well known to be NP-hard.

Let fmc : {0, 1}2 → Q be such that

fmc(0, 1) = fmc(1, 0) < fmc(0, 0) = fmc(1, 1).

Let Γmc = {fmc}. It is easy to see that VCSP(Γmc)
is equivalent to Max Cut. Indeed, variables in an in-
stance of VCSP(Γmc) can be seen as vertices of a graph,
while constraints correspond to edges. An assignment
of 0-1 values to the variables corresponds to a partition,
and each constraint prefers a pair of different values to
a pair of equal values. Thus, VCSP(Γmc) is NP-hard.
Note that fmc is supermodular.

The main problem in this research direction is to
identify all valued constraint languages Γ such that
VCSP(Γ) is tractable, and to determine the complexity
for the remaining constraint languages.

Since all constraints in this paper are valued, we
often omit this word and say simply “constraint” or
“constraint language”. We note that functions in valued
constraints take values in Q≥0 rather than in Q, but,
when infinite costs are disallowed, this restriction is not
essential.

2.2 Expressive Power

Definition 2. For a constraint language Γ, let ⟨Γ⟩
denote the set of all functions f(x1, . . . , xm) such that,
for some instance I of VCSP(Γ) with objective function
fI(x1, . . . , xm, xm+1, . . . , xn), we have

f(x1, . . . , xm) = min
xm+1,...,xn

fI(x1, . . . , xm, xm+1, . . . , xn).

We then say that Γ expresses f , and call ⟨Γ⟩ the
expressive power of Γ.

Definition 3. If functions f, f ′ ∈ FD are such that
f can be obtained from f ′ by scaling and translating,
i. e. f = a · f ′ + b for some constants a ∈ Q>0 and
b ∈ Q, then we write f ≡ f ′. For Γ ⊆ FD, let
Γ≡ = {f | f ≡ f ′ for some f ′ ∈ Γ}.

Theorem 2.1. [8, 11] Let Γ and Γ′ be constraint
languages on D such that Γ′ ⊆ ⟨Γ⟩≡. If VCSP(Γ) is
tractable then VCSP(Γ′) is tractable. If VCSP(Γ′) is
NP-hard then VCSP(Γ) is NP-hard.



The following condition, which we will call (MC),
says that Γ can express Max Cut (see Example 2).

(MC)

There exist distinct a, b ∈ D such that ⟨Γ⟩
contains a unary function u with

argmin(u) = {a, b} and a binary function h

with h(a, b) = h(b, a) < h(a, a) = h(b, b).

The role of function u in (MC) is to enforce that all
optimal solutions to an instance of VCSP(Γ) take only
values from {a, b}. The following lemma is effectively
Lemma 5.1 of [11].

Lemma 2.1. If a constraint language Γ satisfies condi-
tion (MC) then VCSP(Γ) is NP-hard.

All constraint languages Γ such that VCSP(Γ) is
known to be NP-hard satisfy (MC) [11, 22, 23, 27].

2.3 Fractional Polymorphisms We denote by

O
(k)
D = {F | F : Dk → D}

the set of all k-ary operations on D. Furthermore let

OD =
∪∞

k=1 O
(k)
D . For F ∈ O

(k)
D and (not necessarily

distinct) tuples a1, . . . ,ak ∈ Dn, let F (a1, . . . ,ak)
denote the tuple in Dn obtained by applying F to
a1, . . . ,ak coordinate-wise.

A fractional operation of arity k on D is a probabil-

ity distribution µ on O
(k)
D . Let

supp(µ) = {F | Pr
µ
[F ] > 0}.

For a function f ∈ F
(n)
D , µ is said to be a fractional

polymorphism of f [8] if, for all a1, . . . ,ak ∈ Dn,

(2) EF∼µ(f(F (a1, . . . ,ak))) ≤ avg{f(a1), . . . , f(ak)},

or, in expanded form,

(3)
∑

F∈O
(k)
D

Pr
µ
[F ] · f(F (a1, . . . ,ak)) ≤ f(a1)+...+f(ak)

k .

Let fPol(f) denote the set of all fractional polymor-
phisms of f . For a constraint language Γ, let

fPol(Γ) =
∩
f∈Γ

fPol(f).

A fractional polymorphism µ of arity k is a multimor-
phism [11] if the probability of each operation in µ is of
the form l/k for some integer l. A k-ary multimorphism
µ can be represented as a transformation F : Dk → Dk

given by a k-tuple F = (F1, . . . , Fk) of functions from

O
(k)
D , where each operation F ∈ O

(k)
D with Prµ[F ] = l/k

appears l times in F. The inequality (3) can then be
written as

(4)
k∑

i=1

f(Fi(a1, . . . ,ak)) ≤
k∑

i=1

f(ai).

All important fractional polymorphisms identified ear-
lier [9, 11, 23, 26] are in fact multimorphisms.

Recall that a lattice is a partially ordered set in
which each pair of elements has a least upper bound
(join, denoted ∨) and a greatest lower bound (meet,
denoted ∧). For the next example, see [10, 29, 30, 42].

Example 3. (Submodularity on a lattice) Let
L = (D,∨,∧) be a lattice. A function f : Dn → Q is
called submodular on L if

f(a ∨ b) + f(a ∧ b) ≤ f(a) + f(b) for all a,b ∈ Dn.

This inequality can be equivalently expressed by saying
that f has the binary multimorphism µ with Prµ[∨] =
Prµ[∧] = 1/2. If L is a chain, i. e. a total order, then
∨ and ∧ are the usual max and min operations. For
D = {0, 1}, submodularity on a chain is the same as
ordinary submodularity.

Example 4. (Bisubmodularity [1, 18, 35, 36])
Let D = {−1, 0, 1}, and fix the order −1 > 0 < 1 on D.
Define binary operations ∨0 and ∧0 on D, as follows:

1 ∨0 −1 = −1 ∨0 1 = 0;

x ∨0 y = max(x, y) if {x, y} ≠ {−1, 1};
1 ∧0 −1 = −1 ∧0 1 = 0;

x ∧0 y = min(x, y) if {x, y} ≠ {−1, 1},

where maximum and minimum are taken with respect to
the above order on D.

A function f : Dn → Q is called bisubmodular
if it has the binary multimorphism µ with Prµ[∨0] =
Prµ[∧0] = 1/2, that is, if

f(a ∨0 b) + f(a ∧0 b) ≤ f(a) + f(b)

holds for all a,b ∈ Dn.

Other well-known classes of discrete functions, such
as L#-convex functions and tree-submodular func-
tions [18, 26] can be described by suitable multimor-
phisms.

Fractional polymorphisms not only provide a useful
way to describe classes of functions, they characterise
the expressive power of constraint languages.



Theorem 2.2. ([8]) For any Γ ⊆ FD and any f ∈ FD,
we have f ∈ ⟨Γ⟩≡ if and only if fPol(Γ) ⊆ fPol(f).

Together with Theorem 2.1, this implies that
tractable valued constraint languages can be charac-
terised by fractional polymorphisms, since any two lan-
guages with the same set of fractional polymorphisms
must have the same complexity.

We now define a new type of (binary commutative)
fractional polymorphisms on {−1, 0, 1}, which can col-
lectively be called skew bisubmodularity. Recall the op-
erations from Example 4, and, for a ∈ {−1, 1} define
the binary operation ∨a so that 1 ∨a −1 = −1 ∨a 1 = a
and x ∨a y = x ∨0 y = max(x, y) otherwise.

Definition 4. Let α ∈ (0, 1]. We say that a function
f : {−1, 0, 1}n → Q is α-bisubmodular (towards 1) if it
has the fractional polymorphism µ such that Prµ[∧0] =
1/2, Prµ[∨0] = α/2, and Prµ[∨1] = (1− α)/2.

In other words, a function f is α-bisubmodular
(towards 1) if, for all a,b ∈ {−1, 0, 1}n,

(5)
f(a ∧0 b) + α · f(a ∨0 b) + (1− α) · f(a ∨1 b)

≤ f(a) + f(b).

A unary function f is α-bisubmodular if and only
if (1 + α) · f(0) ≤ f(−1) + α · f(1).

Note that α-bisubmodular functions towards −1
can be defined by using ∨−1 instead of ∨1. In the rest
of the paper, we assume that α-bisubmodular functions
are skew towards 1, unless explicitly stated otherwise.
Notice also that the 1-bisubmodular functions (towards
1 or −1) are the ordinary bisubmodular functions from
Example 4.

2.4 Algorithms Some types of fractional polymor-
phisms are known to guarantee tractability of VCSP(Γ).

An operation F ∈ O
(k)
D , k ≥ 1 is called idempotent if

F (x, . . . , x) = x

for all x ∈ D. An idempotent operation F is called
cyclic if

F (x1, x2, . . . , xk) = F (x2, . . . , xk, x1)

for all x1, . . . , xk ∈ D, and symmetric if

F (x1, . . . , xk) = F (xπ(1), . . . , xπ(k))

for all x1, . . . , xk ∈ D and any permutation π on
{1, . . . , k}. Such operations play an important role
in the algebraic approach to the standard CSP [2,
31]. Call a fractional operation µ idempotent, cyclic,

or symmetric if each operation in supp(µ) has the
corresponding property.

A characterisation of valued constraint languages
that can be solved by the basic LP relaxation has been
obtained in [41]. For an instance I of VCSP of the form
(1), let Vi be the subset of VI involved in xi. The basic
LP relaxation is the linear program on the variables

λi,φi ∈ [0, 1] for each i = 1, . . . , q and φi : Vi → D,

µx,a ∈ [0, 1] for each x ∈ VI and a ∈ D,

given by the minimisation problem

min

q∑
i=1

∑
φi:Vi→D

wi · fi(φi(xi))) · λi,φi

such that

∀i = 1, . . . , q,∀x ∈ VI ,∀a ∈ D :
∑

φi:Vi→D
φi(x)=a

λi,φi = µx,a

∀x ∈ VI :
∑
a∈D

µx,a = 1.

Since Γ is fixed, this relaxation has polynomial size (in
I). The integer programming formulation – i. e. we
require the variables λi,φi and µx,a to be in {0, 1} –
is an integer programming formulation of I:

µx,a = 1 means variable x is assigned value a,

λi,φi = 1 means xi is assigned φi(xi).

Theorem 2.3. ([41]) The basic LP relaxation solves
VCSP(Γ) in polynomial time if and only if Γ has
symmetric fractional polymorphisms of all arities.

Specifically, the basic LP relaxation finds the actual
optimal value for each instance I [41], and then an
optimal solution to I can be found by going through
variables in some order and adding constraints µx,a = 1
so that the LP optimum does not change.

Theorem 2.4. ([28]) If Γ has a fractional polymor-
phism µ of some arity k > 1 such that supp(µ) contains
a symmetric operation then Γ has symmetric fractional
polymorphisms of all arities.

In particular, it follows from Theorem 2.4 that
the basic LP relaxation solves VCSP(Γ) in polynomial
time if and only if Γ has a binary commutative (i. e.
symmetric) fractional polymorphism.

One can also consider a basic SDP relaxation for
VCSPs. The following theorem, which possibly provides
a larger class of tractable languages, is implied by results
in Chapters 6 and 7 of [37].

Theorem 2.5. If Γ has a cyclic fractional polymor-
phism of some arity k > 1 then the basic SDP relaxation
solves VCSP(Γ) in polynomial time.



3 Results

In this section we formally state our results. Most of the
proofs are omitted due to space constraints, sometimes
sketches are given. All proofs will be included in the
full version of the paper.

3.1 Cores We say that a constraint language Γ on
D is a core if, for each a ∈ D, there is an instance
Ia of VCSP(Γ) such that a appears in every optimal
solution to I. The intuition is that if Γ is not a core
then there is an element a ∈ D such that any instance
has an optimal solution not using a. In this case, we
simply remove a from D, thus reducing the problem to
a similar one on a smaller domain. Therefore, we can
without loss of generality consider only cores. Note that
α-bisubmodular functions can be defined for α = 0, but
it is not hard to check that the set of 0-bisubmodular
functions is not a core.

The following proposition further reduces the class
of cores that we need to consider. For a constraint
language Γ, let Γc denote the constraint language
obtained from Γ by adding all functions obtained from
functions in Γ by fixing values for some variables, e. g.
g(x, y) = f(x, a, b, y) ∈ Γc if f ∈ Γ and a, b ∈ D.

Proposition 3.1. Let Γ be a core constraint language
on an arbitrary finite set D. Then

1. ⟨Γc⟩ contains a set of unary functions {ua | a ∈ D}
such that argmin(ua) = {a},

2. VCSP(Γ) is tractable if and only if
VCSP(Γc ∪ {ua | a ∈ D}) is tractable,

3. VCSP(Γ) is NP-hard if and only if
VCSP(Γc ∪ {ua | a ∈ D}) is NP-hard.

It follows that it is sufficient to consider only cores Γ
which are closed under fixing values for a subset of vari-
ables and which, in addition, contain, for each a ∈ D, a
unary function ua with argmin(ua) = {a}. Note the last
condition already implies that Γ is a core, and also that
fPol(Γc) consists of the idempotent members of fPol(Γ).
This algebraic condition proved to be extremely im-
portant in the algebraic approach to the CSP (see,
e. g. [2, 6]). Note that the fractional polymorphisms
describing submodularity and α-bisubmodularity are
idempotent (and even symmetric).

3.2 A Characterisation of α-Bisubmodularity
Let ≤ denote the partial order on {−1, 0, 1} such that
0 ≤ t for all t, and −1, 1 are incomparable. Let ≤ also
denote the componentwise partial order on {−1, 0, 1}n.
For a tuple c ∈ {−1, 1}n, the orthant of c is the set

c↓ = {x ∈ {−1, 0, 1}n | x ≤ c}.

Definition 5. For every c ∈ {−1, 1}n, a function
f : {−1, 0, 1}n → Q is called submodular in the orthant
of c, if the α-bisubmodularity inequality (5) holds for all
a,b ∈ c↓.

Note that, in any fixed orthant, only one of−1 and 1 can
appear in each coordinate, and so α-bisubmodularity
becomes the ordinary submodularity inequality (with
0 < 1 and 0 < −1). Recall that a unary function
f is α-bisubmodular if and only if (1 + α) · f(0) ≤
f(−1) + α · f(1).

Proposition 3.2. Let α ∈ (0, 1]. A function f :
{−1, 0, 1}n → Q is α-bisubmodular if and only if the
following two conditions hold:

1. f is submodular in every orthant, and

2. every unary function obtained from f by fixing
values for all but one variable is α-bisubmodular.

This proposition for the case α = 1 was the main
result of [1].

3.3 A Dichotomy Theorem We will generalise
the following two theorems, the classification for the
Boolean case [11] and the complexity classification for
the case of a three-element domain and 0-1-valued func-
tions [22], to a general classification for the case of a
three-element domain.

Theorem 3.1. ([11]) Let Γ be a core constraint lan-
guage on {0, 1}. Either Γ consists of submodular func-
tions and VCSP(Γ) is tractable, or Γc satisfies condition
(MC) and VCSP(Γ) is NP-hard.

Theorem 3.2. ([22]) Let |D| = 3 and let Γ be a
core constraint language on D consisting of 0-1-valued
functions. If the elements of D can be renamed −1, 0, 1
in such a way that each function in Γ is submodular
on the chain −1 < 0 < 1, then VCSP(Γ) is tractable.
Otherwise, Γc satisfies condition (MC) and VCSP(Γ) is
NP-hard.

The next theorem is the main result of the paper.

Theorem 3.3. Let |D| = 3 and let Γ be a core con-
straint language on D. If the elements of D can be
renamed −1, 0, 1 in such a way that

• each function in Γ is submodular on the chain
−1 < 0 < 1, or

• there is 0 < α ≤ 1 such that each function in Γ is
α-bisubmodular

then VCSP(Γ) is tractable. Otherwise, Γc satisfies
condition (MC) and VCSP(Γ) is NP-hard.



The tractability part immediately follows from The-
orems 2.3 and 2.4. (It can also be derived directly
from Theorem 4.1 of [41].) For the hardness part, by
Lemma 2.1 and Proposition 3.1, it suffices to show that
Γc satisfies (MC). An outline of the proof is presented
in Section 3.4.

We now argue that the tractable cases from Theo-
rem 3.3 are pairwise distinct, except that submodularity
on the chain a < b < c is the same as submodularity
on c < b < a, where D = {a, b, c}. It is easy to check
that the function f such that f(a, a) = f(c, c) = 0 and
f(x, y) = 1 otherwise is submodular on a < b < c and
c < b < a, but not on any other chain. The constraint
language consisting of f and all 0-1 valued unary func-
tions is submodular on a < b < c and c < b < a, but
not on any other chain, nor can it be α-bisubmodular
under any renaming into −1, 0, 1. We will often rep-
resent a unary function f from {−1, 0, 1} to Q by its
vector of values [f(−1), f(0), f(1)]. It remains to prove
the following statement.

Proposition 3.3. For every rational α ∈ (0, 1], there
is a core constraint language Γα on D = {−1, 0, 1}
satisfying all of the following conditions:

1. Γα is α-bisubmodular, but not α′-bisubmodular for
any α′ ̸= α.

2. For any permutation of the names of −1, 0, 1 and
any α′ ∈ (0, 1], Γα is not α′-bisubmodular under
that renaming, with the only exception when α =
α′ = 1 and the renaming swaps 1 and −1.

3. Γα is not submodular on any chain on D.

Proof. Let α = p/q where 0 < p ≤ q are positive
integers. Consider the following functions:

• unary e = [1, 0, 1], uα = [p + q, q, 0], and vα =
[0, p, p+ q]

• binary fα such that fα(1,−1) = fα(−1, 1) = 1,
fα(0,−1) = fα(−1, 0) = 1 + q, fα(−1,−1) =
1 + p + q, and f(x, y) = 0 on the remaining pairs
(x, y).

Let Γα = {e, uα, vα, fα}. It can be directly checked
that all functions in Γα are α-bisubmodular (Proposi-
tion 3.2 can also be used for checking fα) and that the
unary functions in Γα make it a core.

Notice that fα is not submodular when restricted
to {−1, 1}. Therefore Γα is not submodular on any
chain on {−1, 0, 1}. It is easy to check that uα is
not α′-bisubmodular for any α′ > α, and vα is not
α′-bisubmodular for any α′ < α. It is also easy to
check that the unary operations guarantee that any

permutation of the names of elements −1, 0, 1 cannot
make Γα α′-bisubmodular for any α′, except swapping
−1 and 1 when α = α′ = 1. �

An easy corollary of Theorem 3.3 is the following:

Theorem 3.4. Let |D| = 3 and let Γ be a core con-
straint language on D. If Γ has a binary commutative
fractional polymorphism, then VCSP(Γ) is tractable.
Otherwise, Γc satisfies condition (MC) and VCSP(Γ)
is NP-hard.

It is straightforward that the problem of deciding
whether a given finite constraint language on a fixed set
has a binary commutative fractional polymorphism can
be expressed as an LP feasibility problem, and therefore
is polynomially solvable. However, our characterisation
of α-bisubmodular functions leads to a simple algorithm
for recognising tractable cases.

Proposition 3.4. Let |D| = 3. There is a quadratic-
time algorithm which, given a finite core constraint
language Γ on D, decides whether VCSP(Γ) is tractable.

Proof. Note that if Γ contains functions of arities
n1, . . . , nk and M is the largest value taken by func-
tions in Γ then the size of Γ is (3n1 + . . .+ 3nk) · logM .
For every renaming of the elements of D into −1, 0, 1
(there are six of them), we do the following. First we
check whether each function in Γ is submodular on the
chain −1 < 0 < 1. This can be done in quadratic time,
by simply verifying the submodularity inequality for all
pairs of tuples. If the above check succeeds then we
stop and conclude that VCSP(Γ) is tractable. Other-
wise, we use Proposition 3.2 to check whether there is
α ∈ (0, 1] such that Γ is α-bisubmodular. First, we
check whether each function in Γ is submodular in all
orthants. The number of different orthants is linear,
and the direct checking for each orthant is quadratic, as
above. If some function fails the check then we conclude
that VCSP(Γ) is not tractable and stop. Otherwise, we

generate the set Γ
(1)
c of unary functions in Γc. It is

clear that it contains at most a quadratic number of

functions. Each function f ∈ Γ
(1)
c gives the inequality

(1+α)·f(0) ≤ f(−1)+α·f(1) that restricts the possible
values for α. One can go through this list of inequali-
ties (just once), updating the possible values for α. At
the end, we know whether the system of inequalities
has a solution. If it does then Γ is α-bisubmodular and
VCSP(Γ) is tractable, if it does not, for any renaming,
then VCSP(Γ) is not tractable. �

3.4 Sketch of the proof of Theorem 3.3 In this
section, we will outline the proof of our main result,



Theorem 3.3. Assume that |D| = 3, and that we
have a constraint language Γ which is a core. By
Proposition 3.1 and Theorem 2.1, we can assume that
Γ = ⟨Γc⟩≡. In particular, for each a ∈ D, Γ contains a
unary function ua with argmin(ua) = {a}. We have the
following.

Lemma 3.1. For at least two distinct 2-element subsets
X ⊆ D, Γ contains functions uX with argmin(uX) = X.

Let us rename the elements ofD into−1, 0, 1 so that
the two 2-element subsets guaranteed by Lemma 3.1 are
{−1, 0} and {0, 1}. From now on we assume that D =
{−1, 0, 1} and that Γ contains uX for each non-empty
subset X ⊆ D except possibly u{−1,1}. By translating
and scaling, we can assume that u{−1,0} = [0, 0, 1] and
u{0,1} = [1, 0, 0].

Lemma 3.2. One of the following holds.

1. Γ contains a function u{−1,1} such that
argmin(u{−1,1}) = {−1, 1},

2. for some α ∈ (0, 1], every unary function in Γ is
α-bisubmodular towards 1,

3. for some α ∈ (0, 1], every unary function in Γ is
α-bisubmodular towards −1.

Let us consider first the case when u{−1,1} ∈ Γ.
Again, we can assume that u{−1,1} = [0, 1, 0]. Clearly,

any function from F
(1)
D can be obtained as a positive

linear combination of u{−1,0}, u{0,1}, and u{−1,1}. This
means that Γ contains all unary functions. Such
constraint languages are called conservative, and their
complexity is classified in [27]. This classification can
be stated as follows: either Γ has a so-called STP
multimorphism or else Γ satisfies (MC). If Γ has an
STP multimorphism, then, by Theorem 19 of [28], Γ is
submodular on a chain. Thus, in this case, the assertion
of Theorem 3.3 holds.

Let us assume for the rest of this section that
u{−1,1} ̸∈ Γ. By Lemma 3.2, we have that, for some
α ∈ (0, 1], the unary functions in Γ are α-bisubmodular,
all towards 1 or all towards −1. Let us assume that
they are all α-bisubmodular towards 1, the other case is
identical. If every function in Γ is α-bisubmodular then
we are done. Otherwise, by Proposition 3.2, Γ contains
a function which is not submodular in some orthant.
The following lemma is well-known, see, e. g. [42].
The notion of submodularity from Example 3 can be
naturally extended to the direct product of lattices, by
defining the operations component-wise.

Lemma 3.3. Let D1, . . . , Dn be finite chains. If a
function f : D1 × . . . × Dn → Q is not submodular

then some binary function obtained from f by fixing all
but two coordinates is not submodular.

Since Γ = Γc, by Lemma 3.3 we can assume that Γ
contains a binary function which is not submodular in
some orthant. If Γ contains a binary function which is
not submodular in the orthant of (1, 1) or (−1,−1) then,
by Lemma 7.8 of [11], Γ satisfies (MC), with u{−1,0} or
u{0,1}, respectively, and then we are done. So let us
assume that Γ contains a binary function f that is not
submodular in the orthant of (−1, 1).

If every function in Γ is submodular on the chain
−1 < 0 < 1 then we are done. Otherwise, by
Lemma 3.3, Γ contains a binary function g which is not
submodular on this chain. We can assume that the func-
tion g is submodular both in the orthant of (1, 1) and
in the orthant of (−1,−1), for we are done otherwise.
If g satisfies both g(1, 0) + g(0,−1) ≤ g(0, 0) + g(1,−1)
and g(0, 1) + g(−1, 0) ≤ g(0, 0) + g(−1, 1) then it can
easily be checked that g is submodular on −1 < 0 < 1.
Since this is not the case, at least one of the inequalities
fails. We can assume, permuting the variables of g if
necessary, that g(1, 0) + g(0,−1) > g(0, 0) + g(1,−1).
The following lemma finishes the proof of Theorem 3.3.

Lemma 3.4. If Γ contains binary functions f and g
such as above then Γ contains a binary function which
is not submodular in the orthant of (−1,−1).

3.5 Multimorphisms vs. Fractional Polymor-
phisms As we noted before, it was open whether
tractability of valued constraint languages can be char-
acterised by multimorphisms. We show that this is not
the case because the set of 1/2-bisubmodular functions
cannot be defined by multimorphisms. Clearly, not ev-
ery unary function is 1/2-bisubmodular, so it suffices to
prove the following.

Proposition 3.5. There is a finite set Γ of 1/2-
bisubmodular functions such that each multimorphism
of Γ is a multimorphism of every unary function on
{−1, 0, 1}.

The proof proceeds as follows. Let µ be a multimor-
phism of a function f . Then there are operations

F1, . . . , Fk ∈ O
(k)
D such that

(6)
k∑

i=1

f(Fi(x1, . . . ,xk)) ≤
k∑

i=1

f(xi)

for all x1, . . . ,xk ∈ Dn. We define the function F :
Dk → Dk by F = (F1, . . . , Fk) and identify µ with F.
If F preserves each tuple in Dk as a multiset, we say
that F preserves multisets. It is easy to see that in



this case the inequality (6) holds with equality for every
unary function. So in order to prove Proposition 3.5 it
suffices to show that if F is a multimorphism of Γ then
F preserves multisets.

4 Conclusion and Discussion

We have classified the complexity of VCSPs (with finite
costs) on a three-element domain. The tractable cases
are described by simple fractional polymorphisms. Our
results suggest the following open problem:

Problem 1. Are the following properties of a core
constraint language Γ equivalent?

1. Γc does not satisfy condition (MC),

2. VCSP(Γ) is tractable,

3. fPol(Γ) contains a cyclic fractional operation of
some arity k > 1,

4. fPol(Γ) contains a symmetric fractional operation
of some arity k > 1,

5. fPol(Γ) contains a binary commutative fractional
operation.

In general, we have (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1),
where (3) ⇒ (2) holds by Theorem 2.5, (2) ⇒ (1) is
by Lemma 2.1, and the implications (5) ⇒ (4) ⇒ (3)
are trivial. The implication (3) ⇒ (1) is not hard to
show directly, without going through (2) and relying on
PTIME ̸= NP. In fact, (4) and (5) are equivalent by
Theorem 2.4. However, by [11, 28, 41] and our results,
all the properties (1) – (5) are indeed equivalent when
|D| ≤ 3. To solve the above problem, it might be helpful
to develop a theory of “fractional” universal algebras
aimed at VCSPs, similar to [6]. First steps towards this
theory are made in [7, 8].

Many efficient algorithms exist for minimising sub-
modular functions (see, e. g. [18, 21, 34, 39]). Lovász
asked in [32] whether there is a generalisation of sub-
modularity that preserves the nice properties such as
efficient minimisation, and this question led to the dis-
covery of bisubmodularity in [36] (where it is called di-
rected submodularity), and subsequent efficient minimi-
sation algorithms for it (see, e. g. [35, 36]). Our results
suggest that it would be interesting to study classes of
functions defined by fractional polymorphisms and try
to find efficient minimisation algorithms for them in the
value-oracle model.

Problem 2. Which fractional operations µ guarantee
an efficient minimisation algorithm, in the value-oracle
model, for the class of all functions f with µ ∈ fPol(f)?

For binary multimorphisms, this problem was intro-
duced as MFM (multimorphism function minimisation)
in [23]. Some initial results in this direction can be
found in [20, 29, 30]. We crucially use α-bisubmodular
functions in our classification. In the VCSP model,
they can be efficiently minimised by the basic LP re-
laxation [28, 41]. However, it is not clear whether
they can also be efficiently minimised in the value-oracle
model. Perhaps the shortest way to efficient algorithms
for minimising submodular and bisubmodular functions
is via the convexity of their Lovász extension [32, 36].
This approach does not work, at least directly, for α-
bisubmodular functions with α < 1. Problem 2 can be
approached for specific fractional polymorphisms, e. g.
those from Example 3 or k-submodularity from [20], as
well as for general types of operations such as those
in Problem 1. Once some efficient algorithms are dis-
covered (if they exist), one could naturally try to design
strongly polynomial or (fully) combinatorial algorithms.
In short, one can try to extend many aspects of sub-
modularity research to classes of functions defined by
fractional polymorphisms.
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