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Abstract

An instance of the maximum constraint satisfaction problem (Max CSP) is a �nite
collection of constraints on a set of variables, and the goal is to assign values to
the variables that maximises the number of satis�ed constraints. Max CSP cap-
tures many well-known problems (such as Max k-SAT and Max Cut) and is
consequently NP-hard. Thus, it is natural to study how restrictions on the allowed
constraint types (or constraint language) a�ect the complexity and approximabil-
ity of Max CSP. The PCP theorem is equivalent to the existence of a constraint
language for which Max CSP has a hard gap at location 1, i.e. it is NP-hard to
distinguish between satis�able instances and instances where at most some constant
fraction of the constraints are satis�able. All constraint languages, for which the
CSP problem (i.e., the problem of deciding whether all constraints can be satis�ed)
is currently known to be NP-hard, have a certain algebraic property. We prove that
any constraint language with this algebraic property makes Max CSP have a hard
gap at location 1 which, in particular, implies that such problems cannot have a
PTAS unless P = NP. We then apply this result toMax CSP restricted to a single
constraint type; this class of problems contains, for instance, Max Cut and Max
DiCut. Assuming P 6= NP, we show that such problems do not admit PTAS ex-
cept in some trivial cases. Our results hold even if the number of occurrences of each
variable is bounded by a constant. Finally, we give some applications of our results.
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1 Introduction

Many combinatorial optimisation problems are NP-hard so there has been a
great interest in constructing approximation algorithms for such problems. For
some optimisation problems, there exist powerful approximation algorithms
known as polynomial-time approximation schemes (PTAS). An optimisation
problem Π has a PTAS A if, for any �xed rational c > 1 and for any instance
I of Π, A(I, c) returns a c-approximate (i.e., within c of optimum) solution
in time polynomial in |I|. There are some well-known NP-hard optimisation
problems that have the highly desirable property of admitting a PTAS: exam-
ples include Knapsack [33], Euclidean Tsp [2], and Independent Set
restricted to planar graphs [6,46]. It is also well-known that a large number of
optimisation problems do not admit PTAS unless some unexpected collapse
of complexity classes occurs. For instance, problems like Max k-SAT [4] and
Independent Set [5] do not admit a PTAS unless P = NP. We note that if
Π is a problem that does not admit a PTAS, then there exists a constant c > 1
such that Π cannot be approximated within c in polynomial time. Throughout
the paper, we assume that P 6= NP.

The constraint satisfaction problem (CSP) [53] and its optimisation variants
have played an important role in research on approximability. For example, it
is well known that the famous PCP theorem has an equivalent reformulation
in terms of inapproximability of some CSP [4,26,56], and the recent combi-
natorial proof of this theorem [26] deals entirely with CSPs. Other important
examples include Håstad's �rst optimal inapproximability results [32] and the
work around the unique games conjecture (UGC) of Khot [16,39,40,52].

We will focus on a class of optimisation problems known as the maximum
constraint satisfaction problem (Max CSP). The most well-known examples
in this class probably are Max k-SAT and Max Cut.

We are now ready to formally de�ne our problem. Let D be a �nite set. A
subset R ⊆ Dn is a relation and n is the arity of R. Let R

(k)
D be the set of all

k-ary relations on D and let RD = ∪∞i=1R
(i)
D . A constraint language is a �nite

subset of RD.

De�nition 1 (CSP(Γ)) The constraint satisfaction problem over the con-
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straint language Γ, denoted CSP(Γ), is de�ned to be the decision problem
with instance (V,C), where

• V is a set of variables, and
• C is a collection of constraints {C1, . . . , Cq}, in which each constraint Ci is
a pair (Ri, si) with si a list of variables of length ni, called the constraint
scope, and Ri ∈ Γ is an ni-ary relation in RD, called the constraint relation.

The question is whether there exists an assignment s : V → D which satis�es
all constraints in C or not. A constraint (Ri, (vi1 , vi2 , . . . , vini

)) ∈ C is satis�ed
by an assignment s if the image of the constraint scope is a member of the
constraint relation, i.e., if (s(vi1), s(vi2), . . . , s(vini

)) ∈ Ri.

Many combinatorial problems are subsumed by the CSP framework; examples
include problems in graph theory [31], combinatorial optimisation [38], and
computational learning [23]. We refer the reader to [18] for an introduction to
this framework.

For a constraint language Γ ⊆ RD, the optimisation problem Max CSP(Γ) is
de�ned as follows:

De�nition 2 (Max CSP(Γ)) Max CSP(Γ) is de�ned to be the optimisation
problem with

Instance: An instance (V,C) of CSP(Γ).
Solution: An assignment s : V → D to the variables.
Measure: Number of constraints in C satis�ed by the assignment s.

We use collections of constraints instead of just sets of constraints as we do not
have any weights in our de�nition of Max CSP. Some of our reductions will
make use of copies of one constraint to simulate something which resembles
weights. We choose to use collections instead of weights because bounded
occurrence restrictions are easier to explain in the collection setting. Note
that we prove our hardness results in this restricted setting without weights
and with a constant bound on the number of occurrences of each variable.

Throughout the article,Max CSP(Γ)-k will denote the problemMax CSP(Γ)
restricted to instances with the number of occurrences of each variable is
bounded by k. For our hardness results we will write that Max CSP(Γ)-B
is hard (in some sense) to denote that there is a k such that Max CSP(Γ)-k
is hard in this sense. If a variable occurs t times in a constraint which ap-
pears s times in an instance, then this would contribute t · s to the number of
occurrences of that variable in the instance.

Example 3 Given a (multi)graph G = (V,E), the Max k-Cut problem,
k ≥ 2, is the problem of maximising |E ′|, E ′ ⊆ E, such that the subgraph
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G′ = (V,E ′) is k-colourable. For k = 2, this problem is known simply as
Max Cut. The problem Max k-Cut is known to be APX-complete for any
k (it is Problem GT33 in [6]), and so has no PTAS. Let Nk denote the binary
disequality relation on {0, 1, . . . , k−1}, k ≥ 2, that is, (x, y) ∈ Nk ⇐⇒ x 6= y.
To see that Max CSP({Nk}) is precisely Max k-Cut, think of vertices of a
given graph as of variables, and apply the relation to every pair of variables x, y
such that (x, y) is an edge in the graph, with the corresponding multiplicity.

Most of the early results on the complexity and approximability of CSP
and Max CSP were restricted to the Boolean case, i.e. when D = {0, 1}.
For instance, Schaefer [54] characterised the complexity of CSP(Γ) for all
Γ over the Boolean domain, the approximability of Max CSP(Γ) for all Γ
over the Boolean domain have also been determined [20,21,38]. It has been
noted that the study of non-Boolean CSP seems to give a better understand-
ing (when compared with Boolean CSP) of what makes CSP easy or hard:
it appears that many observations made on Boolean CSP are special cases
of more general phenomena. Recently, there has been some major progress
in the understanding of non-Boolean CSP: Bulatov has provided a complete
complexity classi�cation of the CSP problem over a three-element domain
[10] and also given a classi�cation of constraint languages that contain all
unary relations [8]. Corresponding results for Max CSP have been obtained
by Jonsson et al. [36] and Deineko et al. [24].

We continue this line of research by studying two aspects of non-BooleanMax
CSP. The complexity of CSP(Γ) is not known for all constraint languages Γ
� it is in fact a major open question [13,29]. However, the picture is not
completely unknown since the complexity of CSP(Γ) has been settled for
many constraint languages [10,11,13,14,34,35].

It has been conjectured [29] that for all constraint languages Γ, CSP(Γ) is
either in P or is NP-complete, and the re�ned conjecture [13] (which we refer
to as the �algebraic CSP Conjecture�, see �3.2 for details) also describes the
dividing line between the two cases. Recall that if P 6= NP, then Ladner's
Theorem [44] states that there are problems of intermediate complexity, i.e.,
there are problems in NP that are not in P and not NP-complete. Hence, we
cannot rule out a priori if there is a constraint language Γ such that CSP(Γ)
is neither in P nor NP-complete. If the algebraic CSP Conjecture is true,
then all NP-complete problems CSP(Γ) are already identi�ed; i.e., it is the
tractability part of the conjecture that is still open.

In the �rst part of the article we study the family of all constraint languages Γ
such that it is currently known that CSP(Γ) is NP-complete. We prove that
each constraint language in this family makes Max CSP(Γ) have a hard gap
at location 1, even when the number of variable occurrence in an instance is
bounded by a su�ciently large constant (depending on Γ), see Theorem 22.
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�Hard gap at location 1� means that it is NP-hard to distinguish instances
of Max CSP(Γ) in which all constraints are satis�able from instances where
at most an ε-fraction of the constraints are satis�able (for some constant
ε which depends on Γ) 2 . This property immediately implies approximation
hardness (in particular, no PTAS) for the problem, even when restricted to
satis�able instances (Corollary 29). We note that, for the Boolean domain and
without the bounded occurrence restriction, Theorem 22 follows from a result
of Khanna et al. [38, Theorem 5.14].

Interestingly, the PCP theorem is equivalent to the fact that, for some con-
straint language Γ over some �nite set D, Max CSP(Γ) has a hard gap at
location 1 [4,26,56]; clearly, CSP(Γ) cannot be polynomial time solvable in
this case. Theorem 22 means that Max CSP(Γ) has a hard gap at location 1
for any constraint language such that CSP(Γ) is known to be NP-complete.
Moreover, if the above mentioned conjecture holds, then Max CSP(Γ) has a
hard gap at location 1 whenever CSP(Γ) is not in P. Another equivalent refor-
mulation of the PCP theorem states that the problemMax 3-SAT has a hard
gap at location 1 [4,56], and our proof consists of a gap preserving reduction
from this problem through a version of the algebraic argument from [13].

The second aspect of Max CSP we study is the case when the constraint
language consists of a single relation; this class of problems contains some of
the best-studied examples ofMax CSP such asMax Cut andMax DiCut.
Note that a full complexity classi�cation of single-relation CSP is not known.
In fact, Feder and Vardi [29] have proved that by providing such a classi�ca-
tion, one has also classi�ed the CSP problem for all constraint languages.

It was proved in [37] that, for any non-empty relation R, the problem Max
CSP({R}) is either trivial (i.e., mapping all variables in any instance to the
same �xed value always satis�es all constraints) or NP-hard. We strengthen
this result by proving approximation hardness (and hence the non-existence
of PTAS) instead of NP-hardness (see Theorem 33), and again even with a
bound on the number of variable occurrences. Our proof uses the �rst main
result, Theorem 22, along with the main result from [7]. Note that, for some
Boolean Max CSP problems, e.g., for Max Cut, a stronger version of The-
orem 33 is known (see, e.g., [32]). We then apply Theorem 33 to generalise
some results from [42,43].

Raghavendra [52] recently proved an interesting result regarding the approx-
imability ofMax CSP. He constructed an approximation algorithm such that

2 Some authors consider the promise problem Gap-CSP[ε, 1] where an instance is
aMax CSP instance (V,C) and the problem is to decide between the following two
possibilities: the instance is satis�able, or at most ε · |C| constraints are simultane-
ously satis�able. Obviously, if a Max CSP(Γ) has a hard gap at location 1, then
there exists an ε such that the corresponding Gap-CSP[ε, 1] problem is NP-hard.
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for any constraint language Γ the solutions produced by the algorithm is within
a factor α(Γ) + ε of the optimal value, for any ε > 0. Furthermore, assuming
the UGC and P 6= NP, he proved that for every constraint language Γ the
problemMax CSP(Γ) cannot be approximated within a factor α(Γ)−ε of the
optimal value for any ε > 0 in polynomial time. Raghavendra's result is very
strong, assuming the UGC and P 6= NP it gives nearly tight approximabil-
ity results for every constraint language. However, it does not give any direct
method for characterising the classes of constraint languages which, e.g., does
not admit a PTAS. Our results are less general in the sense that they apply to
a smaller class of constraint languages and that they do not give near optimal
approximability results. However, we study a di�erent notion of hardness �
hardness at gap location 1. Furthermore, there are explicit methods for char-
acterising the class of constraint languages that are �hard�. We also do not
need any more assumptions than P 6= NP to obtain our results.

Here is an overview of the article: In �2 we de�ne some concepts we need.
Section 3 contains the proof for our �rst result and �4 contains the proof of
our second result. In �4.3 we strengthen some earlier published results onMax
CSP as mentioned above. We give a few concluding remarks in �5.

2 Preliminaries

A combinatorial optimisation problem is de�ned over a set of instances (ad-
missible input data); each instance I has a set sol(I) of feasible solutions
associated with it, and each solution y ∈ sol(I) has a value m(I, y). The ob-
jective is, given an instance I, to �nd a feasible solution of optimum value. The
optimal value is the largest one for maximisation problems and the smallest
one for minimisation problems. A combinatorial optimisation problem is said
to be an NP optimisation (NPO) problem if its instances and solutions can
be recognised in polynomial time, the solutions are polynomially-bounded in
the input size, and the objective function can be computed in polynomial time
(see, e.g., [6]).

De�nition 4 (Performance ratio) A solution s ∈ sol(I) to an instance I
of an NPO maximization problem Π is r-approximate if

max

{
m(I, s)
opt(I)

,
opt(I)

m(I, s)

}
≤ r,

where opt(I) is the optimal value for a solution to I. An approximation
algorithm for an NPO problem Π has performance ratio R(n) if, given any
instance I of Π with |I| = n, it outputs an R(n)-approximate solution.
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PO is the class of NPO problems that can be solved (to optimality) in poly-
nomial time. An NPO problem Π is in the class APX if there is a polynomial
time approximation algorithm for Π whose performance ratio is bounded by a
constant. The following result is well-known (see, e.g., [17, Proposition 2.3]).

Lemma 5 Let D be a �nite set. For every constraint language Γ ⊆ RD,
Max CSP(Γ) belongs to APX. Moreover, if a is the maximum arity of any
relation in Γ, then there is a polynomial time approximation algorithm with
performance ratio |D|a

De�nition 6 (Hard to approximate) We say that a problem Π is hard
to approximate if there exists a constant c such that, Π is NP-hard to ap-
proximate within c (that is, the existence of a polynomial-time approximation
algorithm for Π with performance ratio c implies P = NP).

The following notion has been de�ned in a more general setting by Petrank [50].

De�nition 7 (Hard gap at location α) Max CSP(Γ) has a hard gap at
location α ≤ 1 if there exists a constant ε < α and a polynomial-time reduction
from an NP-complete problem Π to Max CSP(Γ) such that,

• Yes instances of Π are mapped to instances I = (V,C) such that opt(I) ≥
α|C|, and

• No instances of Π are mapped to instances I = (V,C) such that opt(I) ≤
ε|C|.

Note that if a problem Π has a hard gap at location α (for any α) then
Π is hard to approximate. This simple observation has been used to prove
inapproximability results for a large number of optimisation problems. See,
e.g., [3,6,56] for surveys on inapproximability results and the related PCP
theory.

2.1 Approximation Preserving Reductions

To prove our approximation hardness results we use AP -reductions. This type
of reduction is most commonly used to de�ne completeness for certain classes
of optimisation problems (i.e., APX). However, no APX-hardness results are
actually proven in this article since we concentrate on proving that problems
are hard to approximate (in the sense of De�nition 6). We will frequently
use AP -reductions and this is justi�ed by Lemma 9 below. Our de�nition of
AP -reductions follows [21,38].

De�nition 8 (AP -reduction) Given two NPO problems Π1 and Π2 an AP -
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reduction from Π1 to Π2 is a triple (F,G, α) such that,

• F and G are polynomial-time computable functions and α > 0 is a constant;
• for any instance I of Π1, F (I) is an instance of Π2;
• for any instance I of Π1, and any feasible solution s′ of F (I), G(I, s′) is a
feasible solution of I;

• for any instance I of Π1, and any r ≥ 1, if s′ is an r-approximate solution
of F (I) then G(I, s′) is an (1 + (r− 1)α+ o(1))-approximate solution of I
where the o-notation is with respect to |I|.

If such a triple exist we say that Π1 is AP -reducible to Π2. We use the notation
Π1 ≤AP Π2 to denote this fact.

It is a well-known fact (see, e.g., �8.2.1 in [6]) that AP -reductions compose.
The following simple lemma makes AP -reductions useful to us.

Lemma 9 If Π1 ≤AP Π2 and Π1 is hard to approximate, then Π2 is hard to
approximate.

Proof. Let c > 1 be the constant such that it is NP-hard to approximate Π1

within c. Let (F,G, α) be the AP -reduction which reduces Π1 to Π2. We will
prove that it is NP-hard to approximate Π2 within

r =
1

α
(c− 1) + 1− ε′

for any ε′ > 0.

Let I1 be an instance of Π1. Then, I2 = F (I1) is an instance of Π2. Given
an r-approximate solution to I2 we can construct an (1 + (r − 1)α + o(1))-
approximate solution to I1 using G. Hence, we get an 1 + (r − 1)α + o(1) =
c − αε′ + o(1) approximate solution to I1, and when the instances are large
enough this is strictly smaller than c. As c > 1 we can choose ε′ such that
ε′ > 0 and c− αε′ > 1. 2

2.2 Reduction Techniques

The basic reduction technique in our approximation hardness proofs is based
on strict implementations and perfect implementations. Those techniques have
been used before when studying Max CSP and other CSP-related prob-
lems [21,36,38].

De�nition 10 (Implementation) A collection of constraints C1, . . . , Cm over
a tuple of variables x = (x1, . . . , xp) called primary variables and y = (y1, . . . , yq)

8



called auxiliary variables is an α-implementation of the p-ary relation R for
a positive integer α ≤ m if the following conditions are satis�ed:

(1) For any assignment to x and y, at most α constraints from C1, . . . , Cm

are satis�ed.
(2) For any x such that x ∈ R, there exists an assignment to y such that

exactly α constraints are satis�ed.
(3) For any x,y such that x 6∈ R, at most (α− 1) constraints are satis�ed.

De�nition 11 (Strict/Perfect Implementation) An α-implementation is
a strict implementation if for every x such that x 6∈ R there exists y such that
exactly (α−1) constraints are satis�ed. An α-implementation (not necessarily
strict) is a perfect implementation if α = m.

It will sometimes be convenient for us to view relations as predicates instead. In
this case an n-ary relation R over the domain D is a function r : Dn → {0, 1}
such that r(x) = 1 ⇐⇒ x ∈ R. Most of the time we will use predicates
when we are dealing with strict implementations and relations when we are
working with perfect implementations, because perfect implementations are
naturally written as a conjunction of constraints whereas strict implemen-
tations may naturally be seen as a sum of predicates. We will write strict
α-implementations in the following form

g(x) + (α− 1) = max
y

m∑
i=1

gi(xi)

where x = (x1, . . . , xp) are the primary variables, y = (y1, . . . , yq) are the
auxiliary variables, g(x) is the predicate which is implemented, and each xi

is a tuple of variables from x and y.

We say that a collection of relations Γ strictly (perfectly) implements a relation
R if, for some α ∈ Z+, there exists a strict (perfect) α-implementation of
R using relations only from Γ. It is not di�cult to show that if R can be
obtained from Γ by a series of strict (perfect) implementations, then it can
also be obtained by a single strict (perfect) implementation (for the Boolean
case, this is shown in [21, Lemma 5.8]).

The following lemma indicates the importance of strict implementations for
Max CSP. It was �rst proved for the Boolean case, but without the assump-
tion on bounded occurrences, in [21, Lemma 5.17]. A proof of this lemma in
our setting can be found in [24, Lemma 3.4] (the lemma is stated in a slightly
di�erent form but the proof establishes the required AP -reduction).

Lemma 12 If Γ strictly implements a predicate f , then, for any integer k,
there is an integer k′ such that Max CSP(Γ ∪ {f})-k ≤AP Max CSP(Γ)-k′.
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Lemma 12 will be used as follows in our proofs of approximation hardness: if
Γ′ is a �xed �nite collection of predicates each of which can be strictly im-
plemented by Γ, then we can assume that Γ′ ⊆ Γ. For example, if Γ contains
a binary predicate f , then we can assume, at any time when it is conve-
nient, that Γ also contains f ′(x, y) = f(y, x), since this equality is a strict
1-implementation of f ′.

For proving hardness at gap location 1, we have the following lemma.

Lemma 13 If a �nite constraint language Γ perfectly implements a relation R
and Max CSP(Γ∪{R})-k has a hard gap at location 1, then Max CSP(Γ)-k′

has a hard gap at location 1 for some integer k′.

Proof. Let N be the minimum number of relations that are needed in a perfect
implementation of R using relations from Γ.

Given an instance I = (V,C) of Max CSP(Γ ∪ {R})-k, we construct an
instance I ′ = (V ′, C ′) of Max CSP(Γ)-k′ (where k′ will be speci�ed below)
as follows: we use the set V ′′ to store auxiliary variables during the reduction
so we initially let V ′′ be the empty set. For a constraint c = (Q, s) ∈ C, there
are two cases to consider:

(1) If Q 6= R, then add N copies of c to C ′.
(2) If Q = R, then add the implementation of R to C ′ where any auxiliary

variables in the implementation are replaced with fresh variables which
are added to V ′′.

Finally, let V ′ = V ∪V ′′. It is clear that there exists an integer k′, independent
of I, such that I ′ is an instance of Max CSP(Γ′)-k′.

If all constraints are simultaneously satis�able in I, then all constraints in I ′
are also simultaneously satis�able. On the other hand, if opt(I) ≤ ε|C| then

opt(I ′) ≤ εN |C|+ (1− ε)(N − 1)|C|
= (ε+ (1− ε)(1− 1/N)) |C ′|.

The inequality holds because each constraint in I introduces a group of N
constraints in I ′ and, as opt(I) ≤ ε|C|, at most ε|C| such groups are com-
pletely satis�ed. In all other groups (there are (1− ε)|C| such groups) at least
one constraint is not satis�ed. We conclude that Max CSP(Γ)-k′ has a hard
gap at location 1. 2

An important concept is that of a core. To de�ne cores formally we need
retractions. A retraction of a constraint language Γ ⊆ RD is a function π :
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D → D such that if D′ is the image of π then π(x) = x for all x ∈ D′,
furthermore for everyR ∈ Γ we have (π(t1), . . . , π(tn)) ∈ R for all (t1, . . . , tn) ∈
R. We will say that Γ is a core if the only retraction of Γ is the identity function.
Given a relation R ∈ R(k)

D and a subset X of D we de�ne the restriction of R

onto X as follows: R
∣∣∣
X

= {x ∈ Xk | x ∈ R}. For a set of relations Γ we de�ne

Γ
∣∣∣
X

= {R
∣∣∣
X
| R ∈ Γ}. If π is a retraction of Γ with image D′, chosen such that

|D′| is minimal, then a core of Γ is the set Γ
∣∣∣
D′
. For constraint language Γ,Γ′

we say that Γ retracts to Γ′ if there is a retraction π of Γ such that π(Γ) = Γ′.

The intuition here is that if Γ is not a core, then it has a non-injective retraction
π, which implies that, for every assignment s, there is another assignment πs
that satis�es all constraints satis�ed by s and uses only a restricted set of
values. Consequently the problem is equivalent to a problem over this smaller
set. As in the case of graphs, all cores of Γ are isomorphic, so one can speak
about the core of Γ. [31]

The following simple lemma connects cores with non-approximability.

Lemma 14 If Γ′ is the core of Γ, then, for any k, Max CSP(Γ′)-k has a hard
gap at location 1 if and only if Max CSP(Γ)-k has a hard gap at location 1.

Proof. Let π be the retraction of Γ such that Γ′ = {π(R) | R ∈ Γ}, where
π(R) = {π(t) | t ∈ R}. Given an instance I = (V,C) of Max CSP(Γ)-k,
we construct an instance I ′ = (V,C ′) of Max CSP(Γ′)-k by replacing each
constraint (R, s) ∈ C by (π(R), s).

From a solution s to I ′, we construct a solution s′ to I ′ such that s′(x) =
π(s(x)). Let (R, s) ∈ C be a constraint which is satis�ed by s. Then, there
is a tuple x ∈ R such that s(s) = x so π(x) ∈ π(R) and s′(s) = π(s(s)) =
π(x) ∈ π(R). Conversely, if (π(R), s) is a constraint in I ′ which is satis�ed by
s′, then there is a tuple x ∈ R such that s′(s) = π(s(s)) = π(x) ∈ π(R), and
s(s) = x ∈ R. We conclude that m(I, s) = m(I ′, s′).

It is not hard to see that we can do this reduction in the other way too, i.e.,
given an instance I ′ = (V ′, C ′) of Max CSP(Γ′)-k, we construct an instance
I of Max CSP(Γ)-k by replacing each constraint (π(R), s) ∈ C ′ by (R, s).
By the same argument as above, this direction of the equivalence follows, and
we conclude that the lemma is valid. 2

An analogous result holds for the CSP problem, i.e., if Γ′ is the core of Γ,
then CSP(Γ) is in P (NP-complete) if and only if CSP(Γ′) is in P (NP-
complete); see [34] for a proof. Cores play an important role in �4, too. We
have the following lemma:
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Lemma 15 (Lemma 2.11 in [36]) Let Γ′ be the core of Γ. For every k,
there exists k′ such that Max CSP(Γ′)-k ≤AP Max CSP(Γ)-k′.

The lemma is stated in a slightly di�erent form in [36] but the proof establishes
the required AP -reduction.

3 Hardness at Gap Location 1 for Max CSP

In this section, we prove our �rst main result: Theorem 22. The proof makes
use of some concepts from universal algebra and we present the relevant de�-
nitions and results in �3.1 and �3.2. The proof is contained in �3.3.

3.1 De�nitions and Results from Universal Algebra

We will now present the de�nitions and basic results we need from universal
algebra. For a more thorough treatment of universal algebra in general we
refer the reader to [15,19]. The articles [13,18] contain presentations of the
relationship between universal algebra and constraint satisfaction problems.

An operation on a �nite set D is an arbitrary function f : Dk → D. Any
operation on D can be extended in a standard way to an operation on tuples
over D, as follows: let f be a k-ary operation on D. For any collection of k
n-tuples, t1, t2, . . . , tk ∈ Dn, the n-tuple f(t1, t2, . . . , tk) is de�ned as follows:

f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]), f(t1[2], t2[2], . . . , tk[2]), . . . ,

f(t1[n], t2[n], . . . , tk[n])),

where tj [i] is the i-th component in tuple tj . If f(d, d, . . . , d) = d for all
d ∈ D, then f is said to be idempotent. An operation f : Dk → D which
satis�es f(x1, x2, . . . , xk) = xi, for some i, is called a projection.

Let R be a relation in the constraint language Γ. If f is an operation such
that for all t1, t2, . . . , tk ∈ R we have f(t1, t2, . . . , tk) ∈ R, then R is said to
be invariant (or, in other words, closed) under f . If all constraint relations in
Γ are invariant under f , then Γ is said to be invariant under f . An operation
f such that Γ is invariant under f is called a polymorphism of Γ. The set of all
polymorphisms of Γ is denoted Pol(Γ). Given a set of operations F , the set of
all relations that is invariant under all the operations in F is denoted Inv(F ).

Example 16 Let D = {0, 1, 2} and let R be the directed cycle on D, i.e., R =
{(0, 1), (1, 2), (2, 0)}. One polymorphism of R is the operation f : {0, 1, 2}3 →
{0, 1, 2} de�ned as f(x, y, z) = x − y + z (mod 3). This can be veri�ed by
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considering all possible combinations of three tuples from R and evaluating
f component-wise. Let K be the complete graph on D. It is well known and
not hard to check that if we view K as a binary relation, then all idempotent
polymorphisms of K are projections.

We continue by de�ning a closure operator 〈·〉 on sets of relations: for any
set Γ ⊆ RD, the set 〈Γ〉 consists of all relations that can be expressed using
relations from Γ ∪ {EQD} (where EQD denotes the equality relation on D),
conjunction, and existential quanti�cation. Those are the relations de�nable
by primitive positive formulae (pp-formulae). As an example of a pp-formula
consider the relations A = {(0, 0), (0, 1), (1, 0)} and B = {(1, 0), (0, 1), (1, 1)}
over the Boolean domain {0, 1}. With those two relations we can construct
I = {(0, 0), (0, 1), (1, 1)} with the pp-formula

I(x, y) ⇐⇒ ∃z : A(x, z) ∧B(z, y).

Note that pp-formulae and perfect implementations from De�nition 11 are
the same concept. Intuitively, constraints using relations from 〈Γ〉 are exactly
those which can be simulated by constraints using relations from Γ in the CSP
problem. Hence, for any �nite subset Γ′ of 〈Γ〉, CSP(Γ′) is not harder than
CSP(Γ). That is, if CSP(Γ′) is NP-complete for some �nite subset Γ′ of 〈Γ〉,
then CSP(Γ) is NP-complete. If CSP(Γ) is in P, then CSP(Γ′) is in P for
every �nite subset Γ′ of 〈Γ〉. We refer the reader to [35] for a further discussion
on this topic.

The sets of relations of the form 〈Γ〉 are referred to as relational clones, or
co-clones. An alternative characterisation of relational clones is given in the
following theorem.

Theorem 17 ([51])

• For every set Γ ⊆ RD, 〈Γ〉 = Inv(Pol(Γ)).
• If Γ′ ⊆ 〈Γ〉, then Pol(Γ) ⊆ Pol(Γ′).

We will now de�ne �nite algebras and some related notions which we need
later on. The three de�nitions below closely follow the presentation in [13].

De�nition 18 (Finite algebra) A �nite algebra is a pair A = (A;F ) where
A is a �nite non-empty set and F is a set of �nitary operations on A.

We will only make use of �nite algebras so we will write algebra instead of
�nite algebra. An algebra is said to be non-trivial if it has more than one
element.

De�nition 19 (Homomorphism of algebras) Given two algebras A = (A;FA)
and B = (B;FB) such that FA = {fA

i | i ∈ I}, FB = {fB
i | i ∈ I} and both fA

i
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and fB
i are ni-ary for all i ∈ I, then ϕ : A → B is said to be an homomor-

phism from A to B if

ϕ(fA
i (a1, a2, . . . , ani

)) = fB
i (ϕ(a1), ϕ(a2), . . . , ϕ(ani

))

for all i ∈ I and a1, a2, . . . , ani
∈ A. If ϕ is surjective, then B is a homomor-

phic image of A.

Given a homomorphism ϕ mapping A = (A;FA) to B = (B;FB), we can
construct an equivalence relation θ on A as θ = {(x, y) | ϕ(x) = ϕ(y)}. The
relation θ is said to be a congruence relation of A. We can now construct the
quotient algebra A/θ = (A/θ;FA/θ). Here, A/θ = {x/θ | x ∈ A} and x/θ is
the equivalence class containing x. Furthermore, FA/θ = {f/θ | f ∈ FA} and
f/θ is de�ned such that f/θ(x1/θ, x2/θ, . . . , xn/θ) = f(x1, x2, . . . , xn)/θ.

For an operation f : Dn → D and a subset X ⊆ D we de�ne f
∣∣∣
X

as the

function g : Xn → D such that g(x) = f(x) for all x ∈ Xn. For a set of

operations F on D we de�ne F
∣∣∣
X

= {f
∣∣∣
X
| f ∈ F}.

De�nition 20 (Subalgebra) Let A = (A;FA) be an algebra and B ⊆ A. If
for each f ∈ FA and any b1, b2, . . . , bn ∈ B, we have f(b1, b2, . . . , bn) ∈ B, then
B = (B;FA

∣∣∣
B
) is a subalgebra of A.

The operations in Pol(Inv(FA)) are the term operations of A. If all term op-
erations are surjective, then the algebra is said to be surjective. Note that
Inv(FA) is a core if and only if A is surjective [13,34]. If F consist of all the
idempotent term operations of A, then the algebra (A;F ) is called the full
idempotent reduct of A, and we will denote this algebra by Ac. Given a set of
relations Γ over the domain D we say that the algebra AΓ = (D;Pol(Γ)) is
associated with Γ. An algebra B is said to be a factor of the algebra A if B is
a homomorphic image of a subalgebra of A. A non-trivial factor is an algebra
which is not trivial, i.e., it has at least two elements.

3.2 Constraint Satisfaction and Algebra

We continue by describing some connections between constraint satisfaction
problems and universal algebra. The following theorem concerns the hardness
of CSP for certain constraint languages.

Theorem 21 ([13]) Let Γ be a core constraint language. If Ac
Γ has a non-

trivial factor whose term operations are only projections, then CSP(Γ) is NP-
hard.
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The algebraic CSP conjecture [13] states that, for all other core languages Γ,
the problem CSP(Γ) is tractable. This conjecture has been veri�ed in many
important cases (see, e.g., [8,10]).

The �rst main result of this article is the following theorem which states that
Max CSP(Γ)-B has a hard gap at location 1 whenever the condition which
makes CSP(Γ) hard in Theorem 21 is satis�ed.

Theorem 22 Let Γ be a core constraint language. If Ac
Γ has a non-trivial

factor whose term operations are only projections, then Max CSP(Γ)-B has
a hard gap at location 1.

The proof of this result can be found in �3.3. Note that if the above conjecture
is true then Theorem 22 describes all constraint languages Γ for which Max
CSP(Γ) has a hard gap at location 1 because, obviously, Γ cannot have this
property when CSP(Γ) is tractable.

There is another characterisation of the algebras in Theorem 21 which cor-
responds to tractable constraint languages. To state the characterisation we
need the following de�nition.

De�nition 23 (Weak Near-Unanimity Function) An operation f : Dn →
D, where n ≥ 2, is a weak near-unanimity function if f is idempotent and

f(x, y, y, . . . , y) = f(y, x, y, y, . . . , y) = . . . = f(y, . . . , y, x)

for all x, y ∈ D.

Hereafter we will use the acronym wnuf for weak near-unanimity functions.
We say that an algebra A admits a wnuf if there is a wnuf among the term
operations of A. We also say that a constraint language Γ admits a wnuf
if there is a wnuf among the polymorphisms of Γ. By combining a theorem
by Maróti and McKenzie [48, Theorem 1.1] with a result by Bulatov and
Jeavons [12, Proposition 4.14], we get the following:

Theorem 24 Let A be an idempotent algebra. The following are equivalent:

• There is a non-trivial factor B of A such that B only has projections as
term operations.

• The algebra A does not admit any wnuf.

3.3 Proof of Theorem 22

Let 3SAT0 denote the relation {0, 1}3 \ {(0, 0, 0)}. We also introduce three
slight variations of 3SAT0, let 3SAT1 = {0, 1}3 \{(1, 0, 0)}, 3SAT2 = {0, 1}3 \
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{(1, 1, 0)}, and 3SAT3 = {0, 1}3 \ {(1, 1, 1)}. To simplify the notation we let
Γ3SAT = {3SAT0, 3SAT1, 3SAT2, 3SAT3}. It is not hard to see that the
problem Max CSP(Γ3SAT ) is precisely Max 3Sat. It is well-known that this
problem, even when restricted to instances in which each variable occurs at
most a constant number of times, has a hard gap at location 1, see e.g., [56,
Theorem 7]. We state this as a lemma.

Lemma 25 ([56]) Max CSP(Γ3SAT )-B has a hard gap at location 1.

To prove Theorem 22 we will utilise expander graphs.

De�nition 26 (Expander graph) A d-regular graph G is an expander graph
if, for any S ⊆ V [G], the number of edges between S and V [G] \ S is at least
min(|S|, |V [G] \ S|).

Expander graphs are frequently used for proving properties of Max CSP,
cf. [22,49]. Typically, they are used for bounding the number of variable oc-
currences. A concrete construction of expander graphs has been provided by
Lubotzky et al. [47].

Theorem 27 A polynomial-time algorithm T and a �xed integer N exist such
that, for any k > N , T (k) produces a 14-regular expander graph with k(1+o(1))
vertices.

There are four basic ingredients in the proof of Theorem 22. The �rst three
are Lemma 13, Lemma 25, and the use of expander graphs to bound the
number of variable occurrences. We also use an alternative characterisation
(Lemma 28) of constraint languages satisfying the conditions of the theorem.
This is a slight modi�cation of a part of the proof of Proposition 7.9 in [13].
The implication below is in fact an equivalence and we refer the reader to [13]
for the details. Given a function f : D → D, and a relation R ∈ RD, the full
preimage of R under f , denoted by f−1(R), is the relation {x | f(x) ∈ R}
(as usual, f(x) denotes that f should be applied componentwise to x). For
any a ∈ D, we denote the unary constant relation containing only a by ca,
i.e., ca = {(a)}. Let CD denote the set of all constant relations over D, that
is, CD = {ca | a ∈ D}.

Lemma 28 Let Γ be a core constraint language. If the algebra Ac
Γ has a non-

trivial factor whose term operations are only projections, then there is a subset
B of D and a surjective mapping ϕ : B → {0, 1} such that the relational clone
〈Γ ∪ CD〉 contains the relations ϕ−1(3SAT0), ϕ

−1(3SAT1), ϕ
−1(3SAT2), and

ϕ−1(3SAT3)}.

Proof. Let A′ be the subalgebra of Ac
Γ such that there is a homomorphism ϕ

from A′ to a non-trivial algebra B whose term operations are only projections.
We can assume, without loss of generality, that the set {0, 1} is contained in

16



the universe of B. It is easy to see that any relation is invariant under any pro-
jections. Since B only has projections as term operations, the four relations
3SAT0, 3SAT1, 3SAT2 and 3SAT3 are invariant under the term operations
of B. It is not hard to check (see [13]) that the full preimages of those re-
lations under ϕ are invariant under the term operations of A′ and therefore
they are also invariant under the term operations of Ac

Γ. By the observation
that Ac

Γ = AΓ∪CD
and Theorem 17, this implies {ϕ−1(3SAT0), ϕ

−1(3SAT1),
ϕ−1(3SAT2), ϕ

−1(3SAT3)} ⊆ 〈Γ ∪ CD〉. 2

We are now ready to present the proof of Theorem 22. Let S be a permutation
group on the set X. An orbit of S is a subset Ω of X such that Ω = {g(x) |
g ∈ S} for some x ∈ X.

Proof. By Lemma 13, in order to prove the theorem, it su�ces to �nd a �nite
set Γ′ ⊆ 〈Γ〉 such that Max CSP(Γ′)-B has a hard gap at location 1.

Since Γ is a core, its unary polymorphisms form a permutation group S on D.
We can without loss of generality assume that D = {1, . . . , p}. It is known (see
Proposition 1.3 of [55]) and not hard to check (using Theorem 17) that Γ can
perfectly implement the following relation: RS = {(g(1), . . . , g(p)) | g ∈ S}.
Then it can also perfectly implement the relations EQi for 1 ≤ i ≤ p where
EQi is the restriction of the equality relation on D to the orbit in S which
contains i. We have

EQi(x, y) ⇐⇒ ∃z1, . . . , zi−1, zi+1, . . . , zp :RS(z1, . . . , zi−1, x, zi+1, . . . , zp)∧
RS(z1, . . . , zi−1, y, zi+1, . . . , zp).

By Lemma 28, there exists a subset (in fact, a subalgebra) B of D and a
surjective mapping ϕ : B → {0, 1} such that the relational clone 〈Γ ∪ CD〉
contains ϕ−1(Γ3SAT ) = {ϕ−1(R) | R ∈ Γ3SAT}. For 0 ≤ i ≤ 3, let Ri be the
preimage of 3SATi under ϕ. Since Ri ∈ 〈Γ ∪ CD〉, we can show that there
exists a (p+ 3)-ary relation R′

i in 〈Γ〉 such that

Ri = {(x, y, z) | (1, 2, . . . , p, x, y, z) ∈ R′
i}.

Indeed, since Ri ∈ 〈Γ∪CD〉, Ri can be de�ned by a pp-formula Ri(x, y, z) ⇐⇒
∃t : ψ(t, x, y, z) (here t denotes a tuple of variables) where ψ is a conjunction
of atomic formulas involving predicates from Γ∪CD and variables from t and
{x, y, z}. Note that, in ψ, no predicate from CD is applied to one of {x, y, z}
because these variables can take more than one value in Ri. We can without
loss of generality assume that every predicate from CD appears in ψ exactly
once. Indeed, if such a predicate appears more than once, then we can identify
all variables to which it is applied, and if it does not appear at all then we can

17



add a new variable to t and apply this predicate to it. Now assume without loss
of generality that the predicate ci, 1 ≤ i ≤ p, is applied to the variable ti in ψ,
and ψ = ψ1 ∧ ψ2 where ψ1 =

∧p
i=1 ci(ti) and ψ2 contains only predicates from

Γ \ CD. Let t′ be the list of variables obtained from t by removing t1, . . . , tp.
It now is easy to check that that the (p + 3)-ary relation R′

i de�ned by the
pp-formula ∃t′ : ψ2(t, x, y, z) has the required property.

Choose R′
i to be the (inclusion-wise) minimal relation in 〈Γ〉 such that

Ri = {(x, y, z) | (1, 2, . . . , p, x, y, z) ∈ R′
i}

and let Γ′ = {R′
i | 0 ≤ i ≤ 3} ∪ {EQ1, . . . , EQp}. Note that we have Γ′ ⊆ 〈Γ〉.

We will need a more concrete description of R′
i, so we now show that

R′
i = {(g(1), g(2), . . . , g(p), g(x), g(y), g(z)) | g ∈ S, (x, y, z) ∈ Ri}.

The set on the right-hand side of the above equality must be contained in R′
i

because R′
i is invariant under all operations in S. On the other hand, if a tuple

b = (b1, . . . , bp, d, e, f) belongs to R′
i, then there is a permutation g ∈ S such

that (b1, . . . , bp) = (g(1), . . . , g(p)) (otherwise, the intersection of this relation
with RS×D3 ∈ 〈Γ〉 would give a smaller relation with the required property).
Now note that the tuple (1, . . . , p, g−1(d), g−1(e), g−1(f)) also belongs to R′

i

implying, by the choice of R′
i, that (g−1(d), g−1(e), g−1(f)) ∈ Ri. Therefore,

the relation R′
i is indeed as described above.

By Lemma 25, there is an integer l such that Max CSP(Γ3SAT )-l has a hard
gap at location 1. By Lemma 14, Max CSP(ϕ−1(Γ3SAT ))-l has the same
property (because Γ3SAT is the core of ϕ−1(Γ3SAT )). To complete the proof,
we will now AP -reduce Max CSP(ϕ−1(Γ3SAT ))-l to Max CSP(Γ′)-l′ where
l′ = max{14p + 1, l} (recall that p = |D| is a constant). Take an arbitrary
instance I = (V,C) of Max CSP(ϕ−1(Γ3SAT ))-l, and build an instance I ′ =
(V ′, C ′) of Max CSP(Γ′) as follows: introduce new variables u1, . . . , up, and
replace each constraint Ri(x, y, z) in I by R′

i(u1, . . . , up, x, y, z). Note that
every variable, except the ui's, in I ′ appears at most l times. We will now use
expander graphs to construct an instance I ′′ ofMax CSP(Γ′) with a constant
bound on the number of occurrences for each variables.

Let q be the number of constraints in I and let q′ = max{N, q}, where N
is the constant in Theorem 27. Let G = (W,E) be an expander graph (con-
structed in polynomial time by the algorithm T (q′) in Theorem 27) such that
W = {w1, w2, . . . , wm} and m ≥ q. The expander graph T (q′) has q′(1 + o(1))
vertices. Hence, there is a constant α such that T (q′) has at most αq vertices.
For each 1 ≤ j ≤ p, we introduce m fresh variables wj

1, w
j
2, . . . , w

j
m into I ′′. For

each edge {wi, wk} ∈ E and 1 ≤ j ≤ p, introduce p copies of the constraint
EQj(w

j
i , w

j
k) into C

′′. Let C1, C2, . . . , Cq be an enumeration of the constraints
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in C ′. Replace uj by w
j
i in Ci for all 1 ≤ i ≤ q. Finally, let C∗ be the union of

the (modi�ed) constraints in C ′ and the equality constraints in C ′′. It is clear
that each variable occurs in I ′′ at most l′ = max{14p + 1, l} times (as G is
14-regular).

Clearly, a solution s to I satisfying all constraints can be extended to a solution
to I ′′, also satisfying all constraints, by setting s(wj

i ) = j for all 1 ≤ i ≤ m
and all 1 ≤ j ≤ p.

On the other hand, if m(I, s) ≤ ε|C|, then let s′ be an optimal solution to I ′′.
We will prove that there is a constant ε′ < 1 (which depends on ε but not on
I) such that m(I ′′, s′) ≤ ε′|C∗|.

We �rst prove that, for each 1 ≤ j ≤ p, we can assume that all variables in
W j = {wj

1, w
j
2, . . . , w

j
m} have been assigned the same value by s′ and that all

constraints in C ′′ are satis�ed by s′. We show that given a solution s′ to I ′′,
we can construct another solution s2 such that m(I ′′, s2) ≥ m(I ′′, s′) and s2

satis�es all constraints in C ′′.

Let aj be the value that at leastm/p of the variables inW j have been assigned
by s′. We construct the solution s2 as follows: s2(w

j
i ) = aj for all i and j, and

s2(x) = s′(x) for all other variables.

If there is some j such that X = {x ∈ W j | s′(x) 6= aj} is non-empty,
then, since G is an expander graph, there are at least p · min(|X|, |W j \ X|)
constraints in C ′′ which are not satis�ed by s′. Note that by the choice of
X, we have |W j \X| ≥ m/p which implies p ·min(|X|, |W j \X|) ≥ |X|. By
changing the value of the variables inX, we will make at most |X| non-equality
constraints in C∗ unsatis�ed because each of the variables in W j occurs in at
most one non-equality constraint in C∗. In other words, when the value of the
variables in X are changed we gain at least |X| in the measure as some of the
equality constraints in C ′′ will become satis�ed, furthermore we lose at most
|X| by making at most |X| constraints in C∗ unsatis�ed. We conclude that
m(I ′, s2) ≥ m(I ′, s′). Thus, we may assume that all equality constraints in C ′′

are satis�ed by s′.

Since the expander graph G is 14-regular and has at most αq vertices, it has at
most 14

2
αq edges. Hence, the number of equality constraints in C ′′ is at most

7αqp, and |C ′′|/|C ′| ≤ 7αp. We can now bound m(I ′′, s2) as follows:

m(I ′′, s2) ≤ opt(I ′) + |C ′′| ≤ ε|C ′|+ |C ′′|
|C ′|+ |C ′′|

(|C ′|+ |C ′′|) ≤ ε+ 7αp

1 + 7αp
(|C ′|+ |C ′′|).

Since |C∗| = |C ′|+ |C ′′|, it remains to set ε′ = ε+7αp
1+7αp

. 2
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We �nish this section by using Theorem 22 to answer, at least partially, two
open questions. The �rst one concerns the complexity of CSP(Γ)-B. In par-
ticular, the following conjecture has been made by Feder et al. [28].

Conjecture: For any �xed Γ such that CSP(Γ) is NP-complete there is an
integer k such that CSP(Γ)-k is NP-complete.

Under the assumption that the algebraic CSP conjecture (that all problems
CSP(Γ) not covered by Theorem 21 are tractable) holds, an a�rmative answer
follows immediately from Theorem 22. So for all constraint languages Γ such
that CSP(Γ) is currently known to be NP-complete it is also the case that
CSP(Γ)-B is NP-complete.

The second result concerns the approximability of equations over non-abelian
groups. Petrank [50] has noted that hardness at gap location 1 implies the
following: suppose that we restrict ourselves to instances of Max CSP(Γ)
such that there exist solutions that satisfy all constraints, i.e. we concentrate
on satis�able instances. Then, there exists a constant c (depending on Γ) such
that no polynomial-time algorithm can approximate this problem within c.
We get the following result for satis�able instances:

Corollary 29 Let Γ be a core constraint language and let A be the algebra
associated with Γ. Assume there is a factor B of Ac such that B only have
projections as term operations. Then, there exists a constant c such that Max
CSP(Γ)-B restricted to satis�able instances cannot be approximated within c
in polynomial time.

We will now use this observation for studying a problem concerning groups.
Let G = (G, ·) denote a �nite group with identity element 1G. An equation
over a set of variables V is an expression of the form w1 · . . .·wk = 1G, where wi

(for 1 ≤ i ≤ k) is either a variable, an inverted variable, or a group constant.
Engebretsen et al. [27] have studied the following problem:

De�nition 30 (EqG) The computational problem EqG (where G is a �nite
group) is de�ned to be the optimisation problem with

Instance: A set of variables V and a collection of equations E over V .
Solution: An assignment s : V → G to the variables.
Measure: Number of equations in E which are satis�ed by s.

The problem Eq1
G[3] is the same as EqG except for the additional restrictions

that each equation contains exactly three variables and no equation contains
the same variable more than once. Their main result was the following inap-
proximability result:

Theorem 31 (Theorem 1 in [27]) For any �nite group G and constant ε >
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0, it is NP-hard to approximate Eq1
G[3] within |G| − ε.

Engebretsen et al. left the approximability of Eq1
G[3] for satis�able instances

as an open question. We will give a partial answer to the approximability of
satis�able instances of EqG.

It is not hard to see that for any integer k, the equations with at most k
variables over a �nite group can be viewed as a constraint language. For a
group G, we denote the constraint language which corresponds to equations
with at most three variables by ΓG. Hence, for any �nite group G, the problem
Max CSP(ΓG) is no harder than EqG.

Goldmann and Russell [30] have shown that CSP(ΓG) is NP-hard for every
�nite non-abelian group G. This result was extended to more general algebras
by Larose and Zádori [45]. They also showed that for any non-abelian group G,
the algebra A = (G;Pol(ΓG)) has a non-trivial factor B such that B only has
projections as term operations. We now combine Larose and Zádori's result
with Theorem 22:

Corollary 32 For any �nite non-abelian group G, EqG has a hard gap at
location 1.

Thus, there is a constant c such that no polynomial-time algorithm can approx-
imate satis�able instances of EqG better than c. There also exists a constant
k (depending on the group G) such that the result holds for instances with
variable occurrence bounded by k.

4 Approximability of Single Relation Max CSP

In this section, we will prove the following theorem:

Theorem 33 Let R ∈ R
(n)
D be non-empty. If (d, . . . , d) ∈ R for some d ∈ D,

then Max CSP({R}) is solvable in linear time. Otherwise, Max CSP({R})-
B is hard to approximate.

Proof. The tractability part of the theorem is trivial. It was shown in [36]
that any non-empty non-valid relation of arity n ≥ 2 strictly implements a
binary non-empty non-valid relation. Hence, by Lemma 12, it is su�cient to
to prove the the hardness part for binary relations. It is often convenient to
view binary relations as digraphs. The proof for vertex-transitive digraphs is
presented in �4.1, and for the remaining digraphs in �4.2. 2
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Recall that a digraph is a pair (V,E) such that V is a �nite set and E ⊆ V ×V .
A graph is a digraph (V,E) such that for every pair (x, y) ∈ E we also have
(y, x) ∈ E. Let R ∈ RD be a binary relation. As R is binary it can be viewed
as a digraph G with vertex set V [G] = D and edge set E[G] = R. We will
mix freely between those two notations. For example, we will sometimes write
(x, y) ∈ G with the intended meaning (x, y) ∈ E[G].

Let G be a digraph, R = E[G], and let Aut(G) denote the automorphism
group of G. If Aut(G) is transitive (i.e., contains a single orbit), then we say
that G is vertex-transitive. If D can be partitioned into two sets, A and B,
such that for any x, y ∈ A (or x, y ∈ B) we have (x, y) 6∈ R, then R (and
G) is bipartite. The directed cycle of length n is the digraph G with vertex
set V [G] = {0, 1, . . . , n − 1} and edge set E[G] = {(x, x + 1) | x ∈ V [G]},
where the addition is modulo n. Analogously, the undirected cycle of length n
is the graph H with vertex set V [H] = {0, 1, . . . , n− 1} and edge set E[H] =
{(x, x+1) | x ∈ V [H]}∪{(x+1, x) | x ∈ V [H]} (also in this case the additions
are modulo n). The undirected path with two vertices will be denoted by P2.

4.1 Vertex-transitive Digraphs

We will now tackle non-bipartite vertex-transitive digraphs and prove that
they give rise to Max CSP problems which are hard at gap location 1. To do
this, we make use of the algebraic framework which we used and developed in
�3. We will also use a theorem by Barto, Kozik, and Niven [7] on the complexity
of CSP(G) for digraphs G without sources and sinks. A vertex v in a digraph
is a source if there is no incoming edge to v. Similarly, a vertex v is a sink if
there is no outgoing edge from v.

Theorem 34 ([7]) If G is a core digraph without sources and sinks which
does not retract to a disjoint union of directed cycles, then G admits no wnuf.

From this result we derive the following corollary.

Corollary 35 Let H be a vertex-transitive core digraph which is non-empty,
non-valid, and not a directed cycle. Then, Max CSP({H})-B has a hard gap
at location 1.

Proof. Let v and u be two vertices in H. As H is vertex-transitive the in- and
out-degrees of u and v must coincide, and hence the in- and out-degrees of v
must be the same. Hence, H does not have any sources or sinks. Furthermore,
as H is vertex-transitive and a core it follows that it is connected. The result
now follows from Theorem 34, Theorem 24, and Theorem 22. 2
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The next lemmas help to deal with the remaining vertex-transitive graphs, i.e.
those that retract to a directed cycle.

Lemma 36 If G is the undirected path with two vertices P2, or an undirected
cycle Ck, k > 2, then Max CSP({G})-B is hard to approximate.

Proof. If G = P2, then the result follows from Example 3. If G = Ck and k
is even, then the core of Ck is isomorphic to P2 and the result follows from
Lemmas 15, 9 combined with Example 3.

From now on, assume that G = Ck, k is odd, and k ≥ 3. We will show that we
can strictly implement Nk, i.e., the inequality relation. We use the following
strict implementation

Nk(z1, zk−1) + (k − 3) = max
z2,z3,...,zk−2

Ck(z1, z2) + Ck(z2, z3) + . . .+

Ck(zk−3, zk−2) + Ck(zk−2, zk−1).

It is not hard to see that if z1 6= zk−1, then all k − 2 constraints on the right
hand side can be satis�ed. If z1 = zk−1, then k− 3 constraints are satis�ed by
the assignment zi = z1 + i− 1, for all i such that 1 < i < k − 1 (the addition
and subtraction are modulo k). Furthermore, no assignment can satisfy all
constraints. To see this, note that such an assignment would de�ne a path
z1, z2, . . . , zk−1 in Ck with k − 2 edges and z1 = zk−1. This is impossible since
k − 2 is odd and k − 2 < k .

The lemma now follows from Lemmas 12 and 9 together with Example 3. 2

Lemma 37 If G is a digraph such that (x, y) ∈ E[G] ⇒ (y, x) 6∈ E[G],
then Max CSP({H})-B ≤AP Max CSP({G})-B, where H is the undirected
graph obtained from G by replacing every edge in G by two edges in opposing
directions in H.

Proof. H(x, y) + (1− 1) = G(x, y) +G(y, x) is a strict implementation of H
and the result follows from Lemma 12. 2

Lemma 38 If G is a non-empty non-valid vertex-transitive digraph, then
Max CSP({G})-B is hard to approximate.

Proof. By Lemmas 15 and 9, it is enough to consider cores. For directed cy-
cles, the result follows from Lemmas 36 and 37, and, for all other digraphs,
from Corollary 35. 2
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4.2 General Digraphs

We now deal with digraphs that are not vertex-transitive.

Lemma 39 If G is a bipartite digraph which is neither empty nor valid, then
Max CSP({G})-B is hard to approximate.

Proof. If there are two edges (x, y), (y, x) ∈ E[G], then the core of G is iso-
morphic to P2 and the result follows from Lemmas 9 and 15 together with
Example 3. If no such pair of edges exist, then Lemmas 9 and 37 reduce this
case to the previous case where there are two edges (x, y), (y, x) ∈ E[G]. 2

We will use a technique known as domain restriction [24] in the sequel. For

a subset D′ ⊆ D, let Γ
∣∣∣
D′

= {R
∣∣∣
D′

| R ∈ Γ and R
∣∣∣
D′

is non-empty}. The
following lemma was proved in [24, Lemma 3.5] (the lemma is stated in a
slightly di�erent form there, but the proof together with [6, Lemma 8.2] and
Lemma 5 implies the existence of the required AP -reduction).

Lemma 40 If D′ ⊆ D and D′ ∈ Γ, then Max CSP(Γ
∣∣∣
D′

)-B ≤AP Max

CSP(Γ)-B.

Typically, we will let D′ be an orbit in the automorphism group of a graph.
We are now ready to present the three lemmas that are the building blocks
of the main lemma in this section, Lemma 44. Let G be a digraph. For a set
A ⊆ V [G], we de�ne A+ = {j | (i, j) ∈ E[G], i ∈ A}, and A− = {i | (i, j) ∈
E[G], j ∈ A}.

Lemma 41 If a constraint language Γ contains two unary predicates S, T
such that S ∩ T = ∅, then Γ strictly implements S ∪ T .

Proof. Let U = S ∪ T . Then U(x) + (1− 1) = S(x) + T (x) is a strict imple-
mentation of U(x). 2

Lemma 42 Let H be a core digraph and Ω an orbit in Aut(H). Then, H
strictly implements Ω+ and Ω−.

Proof. Assume that H ∈ RD where D = {1, 2, . . . , p} and (without loss of
generality) assume that 1 ∈ Ω. We construct a strict implementation of Ω+;
the other case can be proved in a similar way. Consider the function

g(z1, . . . , zp) =
∑

H(i,j)=1

H(zi, zj).
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Since H is a core, it follows that g(a1, . . . , ap) = |E[H]| if and only if the
function mapping i to ai, i = 1, . . . , p, is an automorphism of H. This also
implies that a necessary condition for g(a1, . . . , ap) = |E[H]| is that a1 is
assigned some element in the orbit containing 1, i.e. the orbit Ω. We claim
that Ω+ can be strictly implemented as follows:

Ω+(x) + (α− 1) = max
z

(H(z1, x) + g(z))

where z = (z1, z2, . . . , zp) and α = |E[H]|+ 1.

Assume �rst that x ∈ Ω+ and choose y ∈ Ω such that H(y, x) = 1. Then, there
exists an automorphism σ such that σ(1) = y and H(z1, x)+g(z) = 1+ |E[H]|
by assigning variable zi, 1 ≤ i ≤ p, the value σ(i).

If x 6∈ Ω+, then there is no y ∈ Ω such that H(y, x) = 1. If the constraint
H(z1, x) is to be satis�ed, then z1 must be chosen such that z1 6∈ Ω. We have
already observed that such an assignment cannot be extended to an automor-
phism of H and, consequently, H(z1, x) + g(z) < 1 + |E[H]| whenever z1 6∈ Ω.
However, the assignment zi = i, 1 ≤ i ≤ p, makes H(z1, x) + g(z) = |E[H]|
since the identity function is an automorphism of H. 2

Lemma 43 If H is a core digraph and Ω an orbit in Aut(H), then, for every
k, there is a k′ such that Max CSP({H|Ω})-k ≤AP Max CSP({H})-k′.

Proof. Let V [H] = {1, 2, . . . , p} and arbitrarily choose one element d ∈ Ω.
Let I = (V,C) be an arbitrary instance of Max CSP({H|Ω})-k and let V =
{v1, . . . , vn}. Let k′ = k|E[H]|+k. We construct an instance I ′ = (V ′∪V,C ′∪
C) of Max CSP({H})-k′ as follows: for each variable vi ∈ V :

(1) Add fresh variables w1
i , . . . , w

d−1
i , wd+1

i , . . . , wp
i to V ′ and let wd

i denote
the variable vi.

(2) For each (a, b) ∈ E[H], add k copies of the constraint H(wa
i , w

b
i ) to C

′.

It is clear that I ′ is an instance ofMax CSP({H})-k′. (If some vertex i ∈ V [H]
occur in every edge in H, then wd

i occur at most k|E[H]|+k times in I ′. This
is the worst case given by the construction above.)

Let s′ be a solution to I ′. For an arbitrary variable vi ∈ V , if there is some
constraint in C ′ which is not satis�ed by s′, then we can get another solution
s′′ by modifying s′ so that every constraint in C ′ is satis�ed (if H(wa

i , w
b
i ) is

a constraint which is not satis�ed by s′ then set s′′(wa
i ) = a and s′′(wb

i ) = b).
We will denote this polynomial-time algorithm by P ′, so s′′ = P ′(s′). The
corresponding solution to I will be denoted by P (s′), so P (s′)(vi) = P ′(s′)(wd

i ).
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The algorithm P may make some of the constraints involving vi unsatis�ed (at
most k constraints will be made unsatis�ed as vi occurs in at most k constraints
in I). However, the number of copies, k, of the constraints in C ′ implies that
m(I ′, s′) ≤ m(I ′, P ′(s′)). In particular, this means that any optimal solution
to I ′ can be used to construct another optimal solution which satis�es all
constraints in C ′.

Hence, for each vi ∈ V , all constraints from step 2 are satis�ed by s′′ =
P ′(s′). As H is a core, s′′ restricted to w1

i , . . . , w
p
i (for any vi ∈ V ) induces

an automorphism of H. Denote the automorphism by f : V [H] → V [H] and
note that f can be de�ned as f(x) = s′′(wx

i ). Furthermore, s′′(wd
i ) ∈ Ω for all

wd
i ∈ V since d ∈ Ω.

To simplify the notation we let l = |E[H]|. By a straightforward probabilistic
argument we have opt(I) ≥ l

p2 |C|. Using this fact and the argument above
we can bound the optimum of I ′ as follows:

opt(I ′) ≤ opt(I) + kl|V |
≤ opt(I) + k2l|C|
≤ opt(I) + k2p2opt(I)

= (1 + k2p2)opt(I).

From Lemma 5 we know that there exists a polynomial-time approximation
algorithm A for Max CSP(H

∣∣∣
Ω
). Let us assume that A is a c-approximation

algorithm, i.e., it produces solutions which are c-approximate in polynomial
time. We construct the algorithm G in the AP -reduction as follows:

G(I, s′) =

P (s′) if m(I, P (s′)) ≥ m(I, A(I)),

A(I) otherwise.

We see that opt(I)/m(I, G(I, s′)) ≤ c. Let s′ be an r-approximate solution
to I ′. As m(I ′, s′) ≤ m(I ′, P ′(s′)), we get that P ′(s′) is an r-approximate
solution to I ′, too. Furthermore, since P ′(s′) satis�es all constraints introduced
in step 2, we have opt(I ′) −m(I ′, P ′(s′)) = opt(I) −m(I, P (s′)). Let β =

26



1 + k2p2 and note that

opt(I)

m(I, G(I, s′))
=

m(I, P (s′))

m(I, G(I, s′))
+
opt(I ′)−m(I ′, P ′(s′))

m(I, G(I, s′))

≤ 1 +
opt(I ′)−m(I ′, P ′(s′))

m(I, G(I, s′))

≤ 1 + c · opt(I ′)−m(I ′, P ′(s′))

opt(I)

≤ 1 + cβ · opt(I ′)−m(I ′, P ′(s′))

opt(I ′)

≤ 1 + cβ · opt(I ′)−m(I ′, P ′(s′))

m(I ′, P ′(s′))
≤ 1 + cβ(r − 1).

2

Lemma 44 Let H be a non-empty non-valid digraph with at least two vertices
which is not vertex-transitive. Then Max CSP({H})-B is hard to approxi-
mate.

Proof. The proof is by induction on the number of vertices, |V [H]|. If |V [H]| =
2 then the result follows from Lemma 39. Assume now that |V [H]| > 2 and
the lemma holds for all digraphs with a smaller number of vertices. Note that
if H is not a core then the core of H has fewer vertices or is vertex-transitive.
In either case, the result follows. So assume that H is a core.

We claim that either (a) Max CSP({H})-B is hard to approximate, or (b)

there exists a proper subset X of V such that |X| ≥ 2, H
∣∣∣
X
is non-empty, H

∣∣∣
X

is non-valid and for every k there exists a k′ such that Max CSP({H
∣∣∣
X
})-k

≤AP Max CSP({H})-k′. Since the core of H
∣∣∣
X
either is vertex-transitive or

has fewer vertices than H, the lemma will follow from this claim.

We now split the proof of the claim into three cases.

Case 1: There exists an orbit Ω1 ( V [H] such that Ω+
1 contains at

least one orbit.

If H
∣∣∣
Ω1

is non-empty, then we get the result from Lemma 43 and the induction

hypothesis, since Ω1 ( V [H] (we cannot have |Ω1| = 1 because then H would

contain a loop). Assume that H
∣∣∣
Ω1

is empty. As H
∣∣∣
Ω1

is empty, we get that Ω+
1

is a proper subset of V [H] with at least two elements. If H
∣∣∣
Ω+

1

is non-empty,

then we get the result from Lemmas 42, 12 and 40. Hence, we assume that
H
∣∣∣
Ω+

1

is empty.
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Arbitrarily choose an orbit Ω2 ⊆ Ω+
1 and note that Ω+

1 ∩ Ω−
2 = ∅ since H

∣∣∣
Ω+

1

is empty. If Ω+
1 ∪ Ω−

2 ( V [H], then we get the result from Lemmas 42, 12,

41 and 40 because H
∣∣∣
Ω+

1 ∪Ω−
2

is non-empty. Hence, we can assume without loss

of generality that Ω+
1 ∪ Ω−

2 = V [H], and since Ω+
1 ∩ Ω−

2 = ∅, we have an
partition of V [H] into the sets Ω+

1 and Ω−
2 . Using the same argument as for

Ω+
1 , we can assume that H

∣∣∣
Ω−

2

is empty. Therefore, Ω+
1 ,Ω

−
2 is a partition of

V [H] and H
∣∣∣
Ω+

1

,H
∣∣∣
Ω−

2

are both empty. This implies that H is bipartite and we

get the result from Lemma 39.

Case 2: There exists an orbit Ω1 ⊂ V [H] such that Ω−
1 contains at

least one orbit.

This case is analogous to the previous case.

Case 3: For every orbit Ω ⊆ V [H], neither Ω+ nor Ω− contains any
orbits.

Pick any two orbits Ω1 and Ω2 (not necessarily distinct). Assume that there
are x ∈ Ω1 and y ∈ Ω2 such that (x, y) ∈ E[H]. Let z be an arbitrary vertex
in Ω2. Since Ω2 is an orbit of H, there is an automorphism ρ ∈ Aut(H) such
that ρ(y) = z, so (ρ(x), z) ∈ E[H]. Furthermore, Ω1 is an orbit of Aut(H) so
ρ(x) ∈ Ω1. Since z was chosen arbitrarily, we conclude that Ω2 ⊆ Ω+

1 . However,
this contradicts our assumption that neither Ω+

1 nor Ω−
1 contains any orbit.

We conclude that for any pair Ω1, Ω2 of orbits and any x ∈ Ω1, y ∈ Ω2, we
have (x, y) 6∈ E[G]. This implies that H is empty and Case 3 cannot occur. 2

We will now give a simple example on how Theorem 33 can be used for study-
ing the approximability of constraint languages.

Corollary 45 Let Γ be a constraint language such that Aut(Γ) contains a
single orbit. If Γ contains a non-empty k-ary, k > 1, relation R which is not
d-valid for all d ∈ D, thenMax CSP(Γ)-B is hard to approximate. Otherwise,
Max CSP(Γ) is tractable.

Proof. If a relation R with the properties described above exists, then Max
CSP(Γ)-B is hard to approximate by Theorem 33 (note that R cannot be
d-valid for any d). Otherwise, every k-ary, k > 1, relation S ∈ Γ is d-valid for
all d ∈ D. If Γ contains a unary relation U such that U ( D, then Aut(Γ)
would contain at least two orbits which contradict our assumptions. It follows
that Max CSP(Γ) is trivially solvable. 2
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Note that the constraint languages considered in Corollary 45 may be seen as
a generalisation of vertex-transitive graphs.

4.3 Max CSP and Supermodularity

In this section, we will prove two results whose proofs make use of Theorem 33.
The �rst result (Proposition 51) concerns the hardness of approximatingMax
CSP(Γ) for Γ which contains all at most binary relations which are 2-monotone
(see �4.3.1 for a de�nition) on some partially ordered set which is not a lattice
order. The other result, Theorem 53, states that Max CSP(Γ) is hard to ap-
proximate if Γ contains all at most binary supermodular predicates on some
lattice and in addition contains at least one predicate which is not supermod-
ular on the lattice.

These results strengthens earlier published results [42,43] in various ways (e.g.,
they apply to a larger class of constraint languages or they give approximation
hardness instead of NP-hardness). In �4.3.1 we give a few preliminaries which
are needed in this section while the new results are contained in �4.3.2.

4.3.1 Preliminaries

Recall that a partial order v on a domain D is a lattice order if, for every
x, y ∈ D, there exist a greatest lower bound x u y and a least upper bound
x t y. The algebra L = (D;u,t) is a lattice, and x t y = y ⇐⇒ x u y =
x ⇐⇒ x v y. We will write x @ y if x 6= y and x v y. All lattices we consider
will be �nite, and we will simply refer to these algebras as lattices instead of
using the more appropriate term �nite lattices. The direct power of L, denoted
by Ln, is the lattice with domain Dn and operations acting componentwise.

De�nition 46 (Supermodular function) Let L be a lattice. A function f :
Ln → R is called supermodular on L if it satis�es,

f(a) + f(b) ≤ f(a u b) + f(a t b) (1)

for all a, b ∈ Ln.

The set of all supermodular predicates on a lattice L will be denoted by
SpmodL and a constraint language Γ is said to be supermodular on a lattice
L if Γ ⊆ SpmodL. We will sometimes use an alternative way of characterising
supermodularity:

Theorem 47 ([25]) An n-ary function f is supermodular on a lattice L if
and only if it satis�es inequality (1) for all (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Ln

such that
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(1) ai = bi with one exception, or
(2) ai = bi with two exceptions, and, for each i, the elements ai and bi are

comparable in L.

The following de�nition �rst occurred in [17].

De�nition 48 (Generalised 2-monotone) Given a poset P = (D,v), a
predicate f is said to be generalised 2-monotone on P if

f(x) = 1 ⇐⇒ ((xi1 v ai1)∧ . . .∧ (xis v ais))∨ ((xj1 w bj1)∧ . . .∧ (xjs w bjs))

where x = (x1, x2, . . . , xn) and ai1 , . . . , ais , bj1 , . . . , bjs ∈ D, and either of the
two disjuncts may be empty.

It is not hard to verify that generalised 2-monotone predicates on some lattice
are supermodular on the same lattice. For brevity, we will use the word 2-
monotone instead of generalised 2-monotone.

The following theorem follows from [24, Remark 4.7]. The proof in [24] uses
the corresponding unbounded occurrence case as an essential stepping stone;
see [21] for a proof of this latter result.

Theorem 49 (Max CSP on a Boolean domain) Let D = {0, 1} and Γ ⊆
RD be a core. If Γ is not supermodular on any lattice on D, thenMax CSP(Γ)-
B is hard to approximate. Otherwise, Max CSP(Γ) is tractable.

4.3.2 Results

The following proposition is a combination of results proved in [17] and [42].

Proposition 50

• If Γ consists of 2-monotone relations on a lattice, then Max CSP(Γ) can
be solved in polynomial time.

• Let P = (D,v) be a poset which is not a lattice. If Γ contains all at most
binary 2-monotone relations on P, then Max CSP(Γ) is NP-hard.

We strengthen the second part of the above result as follows:

Proposition 51 Let v be a partial order, which is not a lattice order, on
D. If Γ contains all at most binary 2-monotone relations on v, then Max
CSP(Γ)-B is hard to approximate.

Proof. Since v is a non-lattice partial order, there exist two elements a, b ∈ D
such that either a u b or a t b do not exist. We will give a proof for the �rst
case and the other case can be handled analogously.

30



Let g(x, y) = 1 ⇐⇒ (x v a) ∧ (y v b). The predicate g is 2-monotone on P
so g ∈ Γ. We have two cases to consider: (a) a and b have no common lower
bound, and (b) a and b have at least two maximal common lower bounds.
In the �rst case g is not valid. To see this, note that if there is an element
c ∈ D such that g(c, c) = 1, then c v a and c v b, and this means that c is a
common lower bound for a and b, a contradiction. Hence, g is not valid, and
the proposition follows from Theorem 33.

In case (b) we will use the domain restriction technique from Lemma 40 to-
gether with Theorem 33. In case (b), there exist two distinct elements c, d ∈ D,
such that c, d v a and c, d v b. Furthermore, we can assume that there is no el-
ement z ∈ D distinct from a, b, c such that c v z v a, b, and, similarly, we can
assume there is no element z′ ∈ D distinct from a, b, d such that d v z′ v a, b.

Let f(x) = 1 ⇐⇒ (x w c) ∧ (x w d). This predicate is 2-monotone on P .
Note that there is no element z ∈ D such that f(z) = 1 and g(z, z) = 1, but
we have f(a) = f(b) = g(a, b) = 1. By restricting the domain to D′ = {x ∈
D | f(x) = 1} with Lemma 40, the result follows from Theorem 33. 2

A diamond is a lattice L on a domainD such that |D|−2 elements are pairwise
incomparable. That is, a diamond on |D| elements consist of a top element, a
bottom element and |D| − 2 elements which are pairwise incomparable. The
following result was proved in [43].

Theorem 52 Let Γ contain all at most binary 2-monotone predicates on some
diamond L. If Γ 6⊆ SpmodL, then Max CSP(Γ) is NP-hard.

By modifying the original proof of Theorem 52, we can strengthen the result
in three ways: our result applies to arbitrary lattices, we prove inapproxima-
bility results instead of NP-hardness, and we prove the result for bounded
occurrence instances.

Theorem 53 Let Γ contain all at most binary 2-monotone predicates on an
arbitrary lattice L. If Γ 6⊆ SpmodL, then Max CSP(Γ)-B is hard to approxi-
mate.

Proof. Let f ∈ Γ be a predicate such that f 6∈ SpmodL. We will �rst prove
that f can be assumed to be at most binary. By Theorem 47, there is a unary
or binary predicate f ′ 6∈ SpmodL which can be obtained from f by substituting
all but at most two variables by constants. We present the initial part of the
proof with the assumption that f ′ is binary and the case when f ′ is unary
can be dealt with in the same way. Denote the constants by a3, a4, . . . , an and
assume that f ′(x, y) = f(x, y, a3, a4, . . . , an).
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Let k ≥ 5 be an integer and assume that Max CSP(Γ ∪ {f ′})-k is hard to
approximate. We will prove that Max CSP(Γ)-k is hard to approximate by
exhibiting an AP -reduction from Max CSP(Γ ∪ {f ′})-k to Max CSP(Γ)-
k. Given an instance I = (V,C) of Max CSP(Γ ∪ {f ′})-k, where C =
{C1, C2, . . . , Cq}, we construct an instance I ′ = (V ′, C ′) of Max CSP(Γ)-
k as follows:

(1) for any constraint (f ′,v) = Cj ∈ C, introduce the constraint (f,v′) into
C, where v′ = (v1, v2, y

j
3, . . . , y

j
n), and add the fresh variables yj

3, y
j
4, . . . , y

j
n

to V ′. Add two copies of the constraints yj
i v ai and ai v yj

i for each
i ∈ {3, 4, . . . , n} to C ′.

(2) for other constraints, i.e., (g,v) ∈ C where g 6= f ′, add (g,v) to C ′.

It is clear that I ′ is an instance ofMax CSP(Γ)-k. If we are given a solution s′

to I ′, we can construct a new solution s′′ to I ′ by letting s′′(yj
i ) = ai for all i, j

and s′′(x) = s′(x), otherwise. Denote this transformation by P , so s′′ = P (s′).
It is not hard to see that m(I ′, P (s′)) ≥ m(I ′, s′).

From Lemma 5 we know that there is a constant c and polynomial-time c-
approximation algorithm A for Max CSP(Γ ∪ {f ′}). We construct the algo-
rithm G in the AP -reduction as follows:

G(I, s′) =

P (s′)
∣∣∣
V
if m(I, P (s′)

∣∣∣
V
) ≥ m(I, A(I)),

A(I) otherwise.

We see that opt(I)/m(I, G(I, s′)) ≤ c.

By Lemma 5, there is a constant c′ such that for any instance I of Max
CSP(Γ), we have opt(I) ≥ c′|C|. Furthermore, due to the construction of I ′
and the fact that m(I ′, P (s′)) ≥ m(I ′, s′), we have

opt(I ′) ≤ opt(I) + 4(n− 2)|C|

≤ opt(I) +
4(n− 2)

c′
· opt(I)

≤ opt(I) ·
(

1 +
4(n− 2)

c′

)
.

Let s′ be an r-approximate solution to I ′. As m(I ′, s′) ≤ m(I ′, P (s′)), we get
that P (s′) also is an r-approximate solution to I ′. Furthermore, since P (s′)
satis�es all constraints introduced in step 1, we have opt(I ′)−m(I ′, P (s′)) =
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opt(I)−m(I, P (s′)
∣∣∣
V
). Let β = 1 + 4(n− 2)/c′ and note that

opt(I)

m(I, G(I, s′))
=
m(I, P (s′)

∣∣∣
V
)

m(I, G(I, s′))
+
opt(I ′)−m(I ′, P (s′))

m(I, G(I, s′))

≤ 1 +
opt(I ′)−m(I ′, P (s′))

m(I, G(I, s′))

≤ 1 + c · opt(I ′)−m(I ′, P (s′))

opt(I)

≤ 1 + cβ · opt(I ′)−m(I ′, P (s′))

opt(I ′)

≤ 1 + cβ · opt(I ′)−m(I ′, P (s′))

m(I ′, P (s′))
≤ 1 + cβ(r − 1).

We conclude that Max CSP(Γ)-k is hard to approximate if Max CSP(Γ ∪
{f ′})-k is hard to approximate.

We will now prove that Max CSP(Γ)-B is hard to approximate under the
assumption that f is at most binary. We say that the pair (a, b) witnesses the
non-supermodularity of f if f(a) + f(b) 6≤ f(a u b) + f(a t b).

Case 1: f is unary. As f is not supermodular on L, there exists elements
a, b ∈ L such that (a, b) witnesses the non-supermodularity of f .

Note that a and b cannot be comparable because we would have {atb, aub} =
{a, b}, and so f(atb)+f(aub) = f(a)+f(b) contradicting the choice of (a, b).
We can now assume, without loss of generality, that f(a) = 1. Let z∗ = a u b
and z∗ = a t b. Note that the two predicates u(x) = 1 ⇐⇒ x v z∗ and
u′(x) = 1 ⇐⇒ z∗ v x are 2-monotone and, hence, contained in Γ. By using
Lemma 40, it is therefore enough to prove approximation hardness for Max
CSP(Γ

∣∣∣
D′

)-B, where D′ = {x ∈ D | z∗ v x v z∗}.

Subcase 1a: f(a) = 1 and f(b) = 1. At least one of f(z∗) = 0 and f(z∗) = 0
must hold.

Assume that f(z∗) = 0, the other case can be handled in a similar way. Let
g(x, y) = 1 ⇐⇒ [(x v a) ∧ (y v b)] and note that g is 2-monotone so g ∈ Γ.

Let d be an arbitrary element inD′ such that g(d, d) = 1. From the de�nition of
g we know that d v a, b so d v z∗ which implies that d = z∗. Furthermore, we
have g(a, b) = 1, f(a) = f(b) = 1, and f(z∗) = 0. Let D′′ = {x ∈ D′ | f(x) =

1}. By applying Theorem 33 to g|D′′ , we see that Max CSP(Γ
∣∣∣
D′′

)-B is hard

to approximate. Now Lemma 40 implies the result for Max CSP(Γ
∣∣∣
D′

)-B,

and hence for Max CSP(Γ)-B.
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Subcase 1b: f(a) = 1 and f(b) = 0. In this case, f(z∗) = 0 and f(z∗) = 0
holds.

If there exists d ∈ D′ such that b @ d @ z∗ and f(d) = 1, then we get f(a) = 1,
f(d) = 1, atd = z∗ and f(z∗) = 0, so this case can be handled by Subcase 1a.
Assume that such an element d does not exist.

Let u(x) = 1 ⇐⇒ b v x. The predicate u is 2-monotone so u ∈ Γ. Let h(x) =
f |D′(x)+u|D′(x). By the observation above, this is a strict implementation. By
Lemmas 12 and 9, it is su�cient to prove the result for Γ′ = Γ|D′∪{h}. This can
be done exactly as in the previous subcase, with D′′ = {x ∈ D′ | h(x) = 1}.

Case 2: f is binary. We now assume that Case 1 does not apply. By Theo-
rem 47, there exist a1, a2, b1, b2 such that

f(a1, a2) + f(b1, b2) 6≤ f(a1 t b1, a2 t b2) + f(a1 u b1, a2 u b2) (2)

where a1, b1 are comparable and a2, b2 are comparable. Note that we cannot
have a1 v b1 and a2 v b2, because then the right hand side of (2) is equal
to f(b1, b2) + f(a1, a2) which is a contradiction. Hence, we can without loss of
generality assume that a1 v b1 and b2 v a2.

As in Case 1, we will use Lemma 40 to restrict our domain. In this case, we
will consider the subdomain D′ = {x ∈ D | z∗ v x v z∗} where z∗ = a1 u b2
and z∗ = a2t b1. As the two predicates uz∗(x) and uz∗(x), de�ned by uz∗(x) =
1 ⇐⇒ x v z∗ and uz∗(x) = 1 ⇐⇒ z∗ v x, are 2-monotone predicates and
members of Γ, Lemma 40 tells us that it is su�cient to prove hardness for
Max CSP(Γ′)-B where Γ′ = Γ

∣∣∣
D′
.

We de�ne the functions ti : {0, 1} → {ai, bi}, i = 1, 2 as follows:

• t1(0) = a1 and t1(1) = b1;
• t2(0) = b2 and t2(1) = a2.

Hence, ti(0) is the least element of ai and bi and ti(1) is the greatest element
of ai and bi.

Our strategy will be to reduce a certain Boolean Max CSP problem to Max
CSP(Γ′)-B. De�ne three Boolean predicates as follows: g(x, y) = f(t1(x), t2(y)),
c0(x) = 1 ⇐⇒ x = 0, and c1(x) = 1 ⇐⇒ x = 1. One can verify that Max
CSP({c0, c1, g})-B is hard to approximate for each possible choice of g, by
using Theorem 49; consult Table 1 for the di�erent possibilities of g.

The following 2-monotone predicates (on D′) will be used in the reduction:

hi(x, y) = 1 ⇐⇒ [(x v z∗) ∧ (y v ti(0))] ∨ [(z∗ v x) ∧ (ti(1) v y)], i = 1, 2.
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Table 1
Possibilities for g.

x y t1(x) t2(y) g(x, y)

0 0 a1 b2 0 0 0 0 1

0 1 a1 a2 1 1 0 1 1

1 0 b1 b2 1 0 1 1 1

1 1 b1 a2 1 0 0 0 0

The predicates h1, h2 are 2-monotone so they belong to Γ′. We will also use
the following predicates:

• Ld(x) = 1 ⇐⇒ x v d,
• Gd(x) = 1 ⇐⇒ d v x, and
• Nd,d′(x) = 1 ⇐⇒ (x v d) ∨ (d′ v x)

for arbitrary d, d′ ∈ D′. These predicates are 2-monotone.

Let w be an integer such that Max CSP({g, c0, c1})-w is hard to approx-
imate; such an integer exists according to Theorem 49. Let I = (V,C),
where V = {x1, x2, . . . , xn} and C = {C1, . . . , Cm}, be an instance of Max
CSP({g, c0, c1})-w. We will construct an instance I ′ of Max CSP(Γ′)-w′,
where w′ = 8w + 5, as follows:

1. For every Ci ∈ C such that Ci = g(xj, xk), introduce
(a) two fresh variables yi

j and y
i
k,

(b) the constraint f(yi
j, y

i
k),

(c) 2w + 1 copies of the constraints Lb1(y
i
j), Ga1(y

i
j), Na1,b1(y

i
j),

(d) 2w + 1 copies of the constraints La2(y
i
k), Gb2(y

i
k), Nb2,a2(y

i
k), and

(e) 2w + 1 copies of the constraints h1(xj, y
i
j), h2(xk, y

i
k).

2. for every Ci ∈ C such that Ci = c0(xj), introduce the constraint Lz∗(xj),
and

3. for every Ci ∈ C such that Ci = c1(xj), introduce the constraint Gz∗(xj).

The intuition behind this construction is as follows: due to the bounded occur-
rence property and the quite large number of copies of the constraints in steps
1c, 1d and 1e, all of those constraints will be satis�ed in �good� solutions. The
elements 0 and 1 in the Boolean problem corresponds to z∗ and z∗, respec-
tively. This may be seen in the constraints introduced in steps 2 and 3. The
constraints introduced in step 1c essentially force the variables yi

j to be either
a1 or b1, and the constraints in step 1d work in a similar way. The constraints
in step 1e work as bijective mappings from the domains {a1, b1} and {a2, b2}
to {z∗, z∗}. For example, h1(xj, y

i
j) will set xj to z∗ if y

i
j is a1, otherwise if y

i
j

is b1, then xj will be set to z∗. Finally, the constraint introduced in step 1b
corresponds to g(xj, xk) in the original problem.
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It is clear that I ′ is an instance of Max CSP(Γ′)-w′. Note that due to the
bounded occurrence property of I ′, a solution which does not satisfy all con-
straints introduced in steps 1c, 1d and 1e can be used to construct a new
solution which satis�es those constraints and has a measure which is greater
than or equal to the measure of the original solution. We will denote this
transformation of solutions by P .

Given a solution s′ to I ′, we can construct a solution s = G(s′) to I by, for
every x ∈ V , letting s(x) = 0 if P (s′)(x) = z∗ and s(x) = 1, otherwise.

Let M be the number of constraints in C of type g. We have that, for an
arbitrary solution s′ to I ′, m(I ′, P (s′)) = m(I, G(s′)) + 8(2w + 1) · M ≥
m(I ′, s′). Furthermore, opt(I ′) = opt(I) + 8(2w + 1)M .

Now, assume that opt(I ′)/m(I ′, s′) ≤ ε′. Then opt(I ′)/m(I ′, P (s′)) ≤ ε′

and

opt(I) + 8(2w + 1)M

m(I,G(s′)) + 8(2w + 1)M
≤ ε′ ⇒

opt(I) ≤ ε′m(I,G(s′)) + (ε′ − 1)8(2w + 1)M ⇒
opt(I)

m(I, G(s′))
≤ ε′ +

8(2w + 1)M(ε′ − 1)

m(I, G(s′))
.

Furthermore, by standard arguments, we can assume that m(I, G(s′)) ≥
|C|/c, for some constant c. We get,

opt(I)

m(I, G(s′))
≤ ε′ + 8(2w + 1)c(ε′ − 1).

Hence, a polynomial time approximation algorithm forMax CSP(Γ′)-w′ with
performance ratio ε′ can be used to obtain ε′′-approximate solutions, where
ε′′ is given by ε′ + 8(2w + 1)c(ε′ − 1), for Max CSP({c0, c1, g})-w in polyno-
mial time. Note that ε′′ tends to 1 as ε′ approaches 1. This implies that Max
CSP(Γ′)-w′ is hard to approximate because Max CSP({c0, c1, g})-w is hard
to approximate. 2

5 Conclusions and Future Work

This article has two main results: the �rst one is thatMax CSP(Γ) has a hard
gap at location 1 whenever Γ satis�es a certain condition which makes CSP(Γ)
NP-hard. This condition captures all constraint languages which are currently
known to make CSP(Γ) NP-hard. This condition has also been conjectured
to be the dividing line between tractable (in P) CSPs and NP-hard CSPs.
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The second result is that single relation Max CSP is either trivial or hard to
approximate.

It is possible to strengthen these results in a number of ways. The following
possibilities applies to both of our results.

We have paid no attention to the constant which we prove inapproximability
for. That is, given a constraint language Γ, what is the smallest constant c
such thatMax CSP(Γ) is not approximable within c−ε for any ε > 0 in poly-
nomial time? For some relations a lot of work has been done in this direction,
cf. [6,32,40,56] for more details. As mentioned in the introduction Raghaven-
dra's result [52] give almost optimal approximability results for all constraint
languages, assuming the UGC. The methods used to obtain good constants are
based on sophisticated PCP constructions, semide�nite programming and the
UGC. We note that these techniques are very di�erent from the ones we have
used in this paper. At present it seems di�cult to use the algebraic techniques
to obtain good constants.

We have a constant number of variable occurrences in our hardness results,
but the constant is unspeci�ed. For some problems, for exampleMax 2Sat, it
is known that allowing only three variable occurrences still makes the problem
hard to approximate (even APX-hard) [6]. This is also true for some other
Max CSP problems such asMax Cut [1]. However, there are CSP problems
which are NP-hard but which becomes easy if the number of variable occur-
rences are restricted to three. In particular, it is known that for each k ≥ 3
there is an integer f(k) such that if s ≤ f(k) then k-Sat-s (the satis�ability
problem with clauses of length k and at most s occurrences of each variable)
is trivial (every instance is satis�able) and otherwise, if s > f(k), then the
problem is NP-complete. Some bounds are also known for f but the exact
behaviour remains unknown [41]. As every instance is satis�able the corre-
sponding maximisation problem Max k-Sat-s is also trivial for s ≤ f(k).
This leads to the following problem: �nd the smallest integer k(Γ) such that
Max CSP(Γ)-k(Γ) is hard to approximate, for constraint languages Γ which
satis�es the condition in Lemma 21 (so Csp(Γ) isNP-complete). One can also
ask the same question for a single non-empty non-valid relation R: �nd the
smallest integer k(R) so that Max CSP({R})-k(R) is hard to approximate.

One of the main open problems is to classify Max CSP(Γ) for all constraint
languages Γ, with respect to tractability of �nding an optimal solution. The
current results in this direction [17,24,36,43] seems to indicate that the concept
of supermodularity is of central importance for the complexity of Max CSP.
However, the problem is open on both ends � we do not know if supermod-
ularity implies tractability and neither do we know if non-supermodularity
implies non-tractability. Here �non-tractability� should be interpreted as �not
in PO� under some suitable complexity-theoretic assumption, the questions

37



of NP-hardness and approximation hardness are, of course, also open.
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