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Abstract. An algorithm for a constraint satisfaction problem is called robust
if it outputs an assignment satisfying at least a (1−f(ϵ))-fraction of constraints
for each (1 − ϵ)-satisfiable instance (i.e. such that at most a ϵ-fraction of

constraints needs to be removed to make the instance satisfiable), where f(ϵ) →
0 as ϵ → 0. We establish an algebraic framework for analyzing constraint
satisfaction problems admitting an efficient robust algorithm with functions f
of a given growth rate. We use this framework to derive hardness results. We

also describe three classes of problems admitting an efficient robust algorithm
such that f is O(1/ log (1/ϵ)), O(ϵ1/k) for some k > 1, and O(ϵ), respectively.
Finally, we give a complete classification of robust satisfiability with a given f
for the Boolean case.

1. Introduction

The constraint satisfaction problem (CSP) provides a framework in which it is
possible to express, in a natural way, many combinatorial problems encountered
in computer science and AI [17, 18, 25]. An instance of the CSP consists of a
set of variables, a domain of values, and a set of constraints on combinations of
values that can be taken by certain subsets of variables. The aim is then to find an
assignment of values to the variables that satisfies the constraints (decision version)
or that satisfies the maximum number of constraints (optimization version).

Since the CSP is NP-hard in full generality, a major line of research in CSP
tries to identify the tractable cases of such problems (see [18, 19]), the primary
motivation being the general picture rather than specific applications. The two
main ingredients of a constraint are (a) variables to which it is applied and (b)
relations specifying the allowed combinations of values or the costs for all combi-
nations. Therefore, the main types of restrictions on CSP are (a) structural where
the hypergraph formed by sets of variables appearing in individual constraints is
restricted [28, 45], and (b) language-based where the constraint language Γ, i.e. the
set of relations that can appear in constraints, is fixed (see, e.g. [10, 17, 18, 25]);
the corresponding problem is denoted by CSP(Γ). The language-based direction
is considerably more active than the structural one, and there are many partial
language-based complexity classification results, e.g. [3, 4, 7, 9, 18, 23, 35, 36], but
many central questions are still open.

The use of approximation algorithms is one of the most fruitful approaches to
coping with NP-hard optimization problems. The CSP has always played an impor-
tant role in the study of approximability. For example, the famous PCP theorem
has an equivalent reformulation in terms of inapproximability of a certain CSP(Γ),
see [1]; moreover, the recent combinatorial proof of this theorem [24] deals entirely
with CSPs. The first optimal inapproximability results [32] by H̊astad were about
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problems CSP(Γ), and they led to the study of a new hardness notion called ap-
proximation resistance [33], which, intuitively, means that a problem cannot be
approximated better than by just picking a random assignment, even on almost
satisfiable instances. Arguably, the most exciting development in approximability
in the past five to six years is the work around the Unique Games Conjecture (UGC)
of Khot, see survey [38]. The UGC states that it is NP-hard to tell almost satisfiable
instances of CSP(Γ) from those where only a small fraction of constraints can be
satisfied, where Γ is the constraint language consisting of all graphs of permutations
over a large enough domain. This conjecture (if true) is known to imply optimal in-
approximability results for many classical optimization problems [38]. Moreover, if
the UGC is true then a simple algorithm based on semidefinite programming (SDP)
provides the best possible approximation for all optimization problems CSP(Γ) [47],
though the exact quality of this approximation is unknown. There is, however, no
unanimity as to which way the UGC will be resolved [2]. A common theme in
these results is the focus on almost satisfiable instances, i.e. those where a tiny
fraction of constraints can be removed to make the remaining instance satisfiable.
The approximability of CSPs restricted to such instances has been actively studied,
see references in [38], also [15, 30, 31, 51]; this additional restriction may change
the approximability of a problem. Most, but not all, algorithms used in this line of
research are based on LP (linear programming) or SDP, and analytic methods are
used to study them.

A polynomial-time algorithm for CSP(Γ) would, in general, treat all unsatisfi-
able instances the same. When can such an algorithm be made to also identify
near-misses, i.e. almost satisfiable instances? There is a line of research aimed at
identifying tractable optimization problems CSP(Γ), i.e. those where an optimal as-
signment can always be found in polynomial time [16], and this property is known
to be quite restrictive [23, 35, 36]. The following natural notion of tractability,
which is stronger than classical tractability of CSP(Γ), but much less restrictive
than tractability of optimization version of CSP(Γ), was suggested in [51]. Call
CSP(Γ) robustly solvable if there is a polynomial-time algorithm which, for every
ϵ > 0 and every (1 − ϵ)-satisfiable instance of CSP(Γ) (i.e. at most a ϵ-fraction of
constraints can be removed to make the instance satisfiable), outputs a (1− f(ϵ))-
satisfying assignment (i.e. that fails to satisfy at most a f(ϵ)-fraction of constraints)
where f is a function such that f(ϵ) → 0 as ϵ → 0 and f(0) = 0. Note that the
running time of the algorithm should not depend on ϵ. Thus, robust solvability
combines, in a natural way, tractability and approximation for CSPs.

The main goal of this paper is to study robust algorithms for problems CSP(Γ).
Two very recent papers [4, 41] study the same topic. In fact, some of our results,
(hardness) Theorem 9 and (positive) Theorem 16, were announced simultaneously
with [41] where Theorem 16 is proved independently in a different way. Our Theo-
rem 9(1) describes problems CSP(Γ) that cannot have an efficient robust algorithm
unless P = NP. Predicting this theorem, Guruswami and Zhou conjectured [31]
that all other problems do admit an efficient robust algorithm, Theorem 16 was
a partial confirmation of the conjecture. Soon after our Theorem 9 and Theo-
rem 16 were announced, Barto and Kozik fully confirmed the conjecture in [4].
The function f(ϵ) in [4] is O(log log (1/ϵ)/ log (1/ϵ)) for the randomized algorithm

and O(log log (1/ϵ)/
√
log (1/ϵ)) for its derandomization, thus one can naturally ask

which problems CSP(Γ) have efficient robust algorithms with better functions f .
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Our results in this direction, Theorems 16, 17 and 18 contribute towards answering
this question within a well known class of CSPs, CSPs of width 1. The last two
theorems are obtained after, and influenced by, results from [4, 41].

Recent breakthroughs in the study of the complexity of CSP have been made
possible by the introduction of the universal-algebraic approach (see [10, 17]), which
extracts algebraic structure from a given constraint language Γ (via operations
called polymorphisms of Γ) and uses it to analyse problem instances. More precisely,
Γ is associated a finite universal algebra A, whose operations are the polymorphisms
of Γ, such that the complexity of CSP(Γ) (and some other important features) is
determined solely by the properties of A. This approach is usually used with the
following pattern: a property is identified, often in terms of operations with specific
identities, such that either A fails this property and then CSP(Γ) can simulate some
simple problem(s) with undesirable attributes (e.g. intractable or not robustly
solvable), or else A has the property, that often comes in several equivalent forms,
which is then used to analyze problem instances and design required algorithms.
Note that every single step in the above description usually requires non-trivial
work. We adapt the universal-algebraic framework to study robust algorithms in
Section 3. We hope that the algebraic approach will become just as fruitful for the
study of robust satisfiability as it has been for the study of decision CSPs.

Establishing local consistency is one of the most natural algorithms for dealing
with (decision) CSPs. The basic idea is to inspect a given instance locally, deriv-
ing new constraints according to the currently observed part of the instance, until
no new constraints can be derived. Then either a contradiction is derived or else
local consistency is established (which in general does not imply the existence of a
solution). Under additional assumptions on Γ, the latter does imply the existence
of a solution. These additional assumptions can often be expressed in terms of
polymorphisms [11, 13, 20, 25]. There are many sorts of local consistency that have
been studied in the literature, which use various rules for deriving new constraints.
One nice way to formalize the fact that some form of local consistency correctly
solves a CSP(Γ) is via homomorphism dualities, and we use this approach in the
present paper (see Section 4). We use algebraic characterizations of some dualities
to design robust approximation algorithms for CSP(Γ) in Section 5. For a given
almost satisfiable instance, the algorithms seek to remove a small fraction of con-
straints to achieve some form of local consistency, thus obtaining an assignment
satisfying the remaining constraints.

Finally, in Section 6, we use our results together with some earlier results to
complete the picture of robust satisfiability in the Boolean (i.e. two-valued) case:
for each Γ we describe the best possible function f , modulo complexity-theoretic
assumptions.

2. Preliminaries

Let A be a finite set. A k-ary tuple a = (a1, . . . , ak) is any element of Ak. For
1 ≤ i ≤ k, we shall use ai to denote the ith element ai of a. A k-ary relation on A
is a collection of k-ary tuples or, alternatively, a subset of Ak. We shall use ρ(R)
to denote the arity of relation R. For any 1 ≤ i ≤ k, the projection of R to the ith
coordinate pri(R) ⊆ A is defined as pri(R) = {ai | a ∈ R}.

An instance of the CSP is a triple I = (V,A, C) with V a finite set of variables,
A a finite set called domain, and C a finite list of constraints, where each constraint
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is a pair C = (v, R) where v = (v1, . . . , vk) is a tuple of variables of length k, called
the scope of C, and R an k-ary relation on D, called the constraint relation of C.
The arity of a constraint C, ρ(C), is defined to be arity of its constraint relation.

Note that we allow repetition of constraints in C. Very often we will say that a
constraint C belongs to instance I when, strictly speaking, we should be saying that
appears in the constraint list C of I. Also, we might sometimes write (v1, . . . , vk, R)
instead of ((v1, . . . , vk), R). A finite set of relations Γ on a finite set A is called
a constraint language. The problem CSP(Γ) consists of all instances of the CSP
where all the constraint relations are from Γ. An assignment for I is a mapping
s : V → A. We say that s satisfies a constraint (v, R) if s(v) ∈ R (where s is
applied component-wise). For 0 ≤ α ≤ 1, we say that assignment s α-satisfies I if
it satisfies at least α-fraction of the constraints in I. In this case, we say that I is
α-satisfiable.

The decision problem for CSP(Γ) asks whether an input instance I of CSP(Γ)
has a solution, i.e., an assignment satisfying all constraints. The optimization prob-
lem for CSP(Γ) asks to find an assignment that satisfies the maximum number
of constraints. The maximization problem is computationally intractable for the
vast majority of constraint languages Γ motivating the study of approximation al-
gorithms.

Let Γ be a constraint language and let ALG be an algorithm that receives as
input an instance of CSP(Γ) and returns an assignment for its input. For real
numbers 0 ≤ α, β ≤ 1 we say that ALG (α, β)-approximates CSP(Γ) if whenever it
receives an α-satisfiable input instance I it returns an assignment that β-satisfies
I.

Let f : [0, 1] → [0,∞) be an error function with f(ϵ) → 0 as ϵ→ 0 and f(0) = 0.
If ALG (1 − ϵ, 1 − f(ϵ))-approximates CSP(Γ) for every ϵ ≥ 0 then we say that
ALG robustly solves CSP(Γ). Furthermore, if f(ϵ) = O(ϵ1/k) for some k ≥ 1 then
we say that ALG robustly solves CSP(Γ) with polynomial loss.

If G is a finite Abelian group we denote by 3EQ-LIN(G) the constraint language
over the base set of G that contains all linear equations over G with 3 variables.
As a consequence of the following theorem by H̊astad, 3EQ-LIN(G) is not robustly
solvable if G has more than one element.

Theorem 1. [32] If G is an Abelian group with d > 1 elements then for every
ϵ > 0 there is no polynomial-time algorithm that (1 − ϵ, 1/d + ϵ)-approximates
CSP(3EQ-LIN(G)) unless P = NP.

Local consistency is a powerful family of algorithms used in the decision problem
for CSP(Γ). For fixed integers 0 ≤ j ≤ k, the (j, k)-consistency algorithm derives
constraints on j variables which can be deduced by looking at k variables at a time.
The algorithm finishes after a polynomial number of steps. During this process,
the algorithm might generate a contradiction, that is, a constraint with empty
constraint relation meaning that the instance has no solution. Since CSP is NP-
complete one cannot expect that the converse always holds. We say that CSP(Γ)
has width (j, k) if an instance has a solution if and only if the (j, k)-consistency
algorithm does not derive a contradiction. Finally, we say that CSP(Γ) has width
j if it has width (j, k) for some j ≤ k and that CSP(Γ) has bounded width if it
has width j for some j ≥ 0. We shall give a precise, alternative characterization
of bounded width CSPs in Section 2.1. The power of (j, k)-consistency is, by now,
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very well understood due to the results of Barto and Kozik [3], building upon [44]
(see Theorem 6 below) and Bulatov [8].

Guruswami and Zhou conjectured the following connection between bounded
width and approximation:

Conjecture 1. (Guruswami, Zhou [31]) For every constraint language Γ, CSP(Γ)
has bounded width if and only if it is robustly solvable.

The ’only if’ direction of the conjecture follows with just a little bit of work
from known results. We prove it in Section 3. The ’if’ part is much more difficult.
In Section 5 we give a proof for the case of width 1 CPSs. This result has been
obtained independently by Kun et al [41]. Later, Barto and Kozik presented a proof
for all bounded width CSPs, settling the Guruswami-Zhou conjecture.

Theorem 2. [4] For every constraint language Γ, if CSP(Γ) has bounded width
then it is robustly solvable.

In this paper, we are interested in a more fine-grained analysis of robust ap-
proximation that takes into consideration the quantitative dependence of f on ϵ
(linear loss O(ϵ) , quadratic loss O(ϵ1/2), etc.). To investigate it, we introduce
the notation CSP(Γ)≤RA CSP(Γ′) as a shortand for: for any error function f with
limϵ→0 f(ϵ) = 0, if some algorithm (1− ϵ, 1−f(ϵ))-approximates CSP(Γ′) for every
ϵ ≥ 0 then there is a polynomial-time algorithm that (1−ϵ, 1−O(f(ϵ)))-approximates
CSP(Γ) for every ϵ ≥ 0. Note that the relation ≤RA is transitive.

We need a few concepts from propositional logic. A clause is Horn (respectively,
dual Horn) if it contains at most one positive (respectively, one negative) literal.
Let k -HORN (resp. k -DualHORN) be the constraint language over the Boolean
domain that contains all Horn (dual Horn) clauses with at most k variables, and
let 2 -SAT be the constraint language over the Boolean domain containg all clauses
with at most 2 literals. Let ̸=2 be the boolean relation {(0, 1), (1, 0)}.

The next theorem uses Khot’s Unique Games (UG) conjecture [37]. This conjec-
ture states that, for any ϵ ≥ 0, there is a large enough number k = k(ϵ) such that
it NP-hard to tell ϵ-satisfiable from (1− ϵ)-satisfiable instances of CSP(Γk), where
Γk consists of all graphs of bijections on a k-element set.

Theorem 3. [51, 31, 15, 39] Let k ≥ 1. The following conditions hold:

(1) There is a polynomial time algorithm that (1−ϵ, 1−O(1/ log(1/ϵ)))-approximates
CSP(k -HORN) for all ϵ ≥ 0.

(2) If k ≥ 3, there is no polynomial time algorithm that (1−ϵ, 1−o(1/ log(1/ϵ)))-
approximates CSP(k -HORN) for all ϵ ≥ 0 unless the UG conjecture is false.

(3) There is a polynomial time algorithm that (1− ϵ, 1−O(
√
ϵ))-approximates

CSP(2 -SAT) for all ϵ ≥ 0.
(4) There is no polynomial time algorithm that (1− ϵ, 1− o(

√
ϵ))-approximates

CSP({̸=2}) for all ϵ ≥ 0 unless the UG conjecture is false.

Conditions (1) and (2) obviously hold if we replace k -HORN by k -DualHORN.

For any instance I = (V,A, C) of CSP(Γ), there is an equivalent canonical 0-1
integer program. It has variables pv(a) for every v ∈ V , a ∈ A, as well as variables
pC(a) for every constraint C = (v, R) and every tuple a ∈ Aρ(R). The interpretation
of pv(a) = 1 is that variable v is assigned value a; the interpretation of pC(a) = 1
is that v is assigned (component-wise) tuple a. More formally, the program is the
following:
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maximize:
1

|C|
∑

C=(v,R)∈C

pC(R)

subject to:

pv(A) = 1 v ∈ V (1)

pC(A
j−1 × {a} ×Aρ(C)−j) = pvj (a) C = (v, R) ∈ C, 1 ≤ j ≤ ρ(C), a ∈ A (2)

where, for every v ∈ V and S ⊆ A, pv(S) is a shorthand for
∑
a∈S pv(a) and for

every C and every T ⊆ Aρ(C), pC(T ) is a shorthand for
∑

a∈T pC(a).
If we relax the previous program by allowing the variables to take values in the

range [0, 1] instead of {0, 1}, we obtain the basic linear programming relaxation for
I, which we denote by BLP(I). As Γ is fixed, an optimal solution of BLP(I) can
be computed in time polynomial in the representation size of I. Restriction (1) of
BLP(I) expresses the fact that, for each v ∈ V , the quantities pv(a), a ∈ A form a
discrete probability distribution on A. Also (1) and (2) together express the fact
that, for each constraint C = (v, R), of arity k, the quantities pC(a),a ∈ Ak form
a probability distribution on Ak and that the marginals of the pC distribution are
”consistent” with the pv distributions.

2.1. Algebra. Most of the terminology introduced in this section is standard (see
[12] for example). An n-ary operation on A f is a map from An to A.

Let us now define several types of operations that will be used in this paper.

• An operation f is idempotent if it satisfies the identity f(x, . . . , x) = x.
• An n-ary operation f onA is totally symmetric if f(x1, . . . , xn) = f(y1, . . . , yn)
whenever {x1, . . . , xn} = {y1, . . . , yn}. It follows from this condition that
we can properly write f(S) for every S ⊆ A.

• An n-ary (n ≥ 3) operation is a NU (near-unanimity) operation if it satisfies
the identities

f(y, x, . . . , x, x) = f(x, y, . . . , x, x) = · · · = f(x, x, . . . , x, y) = x

• A ternary NU operation is called a majority operation.
• A binary idempotent commutative associative operation is called a semi-
lattice operation.

• A pair of semilattice operations on A is a pair of lattice operations if, in addi-
tion, they satisfy the absorption identities: f(x, g(x, y)) = g(x, f(x, y)) = x.
In this case (A, f, g) is called a lattice.

It is standard practice to use infix notation for lattice operations, i.e., to write
x⊔y and x⊓y for f(x, y) and g(x, y) respectively. A lattice is said to be distributive
if it satisfies the identity x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z). Equivalently, a lattice is
distributive if it can be represented by a family of subsets of a set with the operations
interpreted as set-theoretic intersection and union (see [29]).

An operation f preserves (or is a polymorphism of) a k-ary relation R if for every
n and (not necessarily distinct) tuples (ai1, . . . , a

i
k) ∈ R, 1 ≤ i ≤ n, the tuple

(f(a11, . . . , a
n
1 ), . . . , f(a

1
k, . . . , a

n
k ))

belongs to A as well. Given a set Γ of relations on A, we denote by Pol(Γ) the
set of all operations that preserve all relations in Γ. If f ∈ Pol(Γ) then Γ is said
to be invariant under f . If R is a relation we might freely write Pol(R) to denote



ROBUST SATISFIABILITY FOR CSPS: HARDNESS AND ALGORITHMIC RESULTS 7

Pol({R}). If every unary operation in Pol(Γ) is one-to-one then Γ is said to be a
core.

The cornerstone of the use of algebra in the exploration of constraint satisfaction
is a theorem proven by Geiger and also by Bodnarchuk et al. [6, 27]. In order to
state it, we need to introduce some definitions. Let Γ be a finite set of relations
on A and let R ⊆ Ak. Let eqA (eq, if A is clear from the context) the relation
{(a, a) | a ∈ A}. We say that R is pp-definable from Γ if there exists a (primitive
positive) formula

ϕ(x1, . . . , xk) ≡ ∃y1, . . . , yl ψ(x1, . . . , xk, y1, . . . , yl)
where ψ is a conjunction of atomic formulas with relations in Γ and eqA such that
for every (a1, . . . , ak) ∈ Ak

(a1, . . . , ak) ∈ R if and only if ϕ(a1, . . . , ak) holds.

If ψ does not contain eqA then we say that R is pp-definable from Γ without equality.
Note that in the definition of primitive positive formulas we are slightly abusing
notation by identifying a relation with its relation symbol.

A k-ary relation R is irredundant if for every two different coordinates 1 ≤ i <
j ≤ k, R contains a tuple (a1, . . . , ak) with ai ̸= aj .

Theorem 4. [6, 27] Let Γ be a finite set of relations on A and let R be a relation
on A. Then the following holds.

(1) Pol(Γ) ⊆ Pol(R) if and only if R is pp-definable from Γ.
(2) if R is irredundant and Pol(Γ) ⊆ Pol(R) then R pp-definable from Γ without

equality.

An algebra is an ordered pair A = (A,F ) where A is a non-empty set, called the
universe of A, and F is a set of finitary operations on A, called the basic operations
of A. If Γ is a set of relations on A, the algebra associated to Γ is the algebra
(A,Pol(Γ)). Throughout the paper we use the same capital letters (with different
font) to denote a structure and its universe.

The term operations of an algebra are the operations that can be built from its
basic operations using composition and projections. The full idempotent reduct of
an algebra A is the algebra with the same universe of A and whose basic operations
are the idempotent term operations of A. For the purposes of this paper it is only
necessary to know that the full idempotent reduct of the algebra associated to Γ
has as basic operations all the idempotent operations that preserve Γ.

There are some standard ways to assemble new algebras from those already at
hand. The most standard ones are the formation of subalgebras, direct products,
and homomorphic images, which are defined in a natural way. A class of algebras
is a variety if it is closed under formation of homomorphic images (H), subalgebras
(S) and direct products (P). The variety generated by A is denoted by V(A); it is
known that V(A) = HSP(A), i.e. that every member C of the V(A) is obtained as
a homomorphic image of a subalgebra of a power of A; furthermore this power can
be taken to be finite if C is finite.

A set Γ of finite relations on A is compatible with A if every relation in Γ is
preserved by every basic operation in A.

Tame Congruence Theory, developed by Hobby and McKenzie [34], is a powerful
tool to analyze finite algebras. Every algebra can be assigned a subset of five types
that correspond to different possible ”local behaviours” of the algebra. The possible
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types are: (1) the unary type, (2) the affine type, (3) the Boolean type, (4) the
lattice type, and (5) the semilattice type. We use Tame Congruence Theory as a
black box to link existing results and we do not require a precise definition of types.
A variety is said to admit a type if this type occurs in some finite algebra in the
variety; otherwise, the variety omits the type.

The following result follows from [49] and [50] (see [42])

Theorem 5. Let A be a finite idempotent algebra.

(1) If V(A) admits the unary or affine types then there exists an algebra B in
HS(A) with more than one element and an Abelian group structure G on
the base set, B, of B such that every relation in 3EQ-LIN(G) is compatible
with B.

(2) If V(A) omits the unary and affine types, but admits the semilattice type
then there exists an algebra B in HS(A) whose universe is {0, 1} and such
that every relation in 3 -HORN is compatible with B.

It turns out that for every core constraint language Γ, CSP(Γ) has bounded
width if and only if its associated algebra fails the first condition of Theorem 5.
The class of bounded width problems has also several characterizations in terms
of the presence of certain operations in Pol(Γ). The following theorem (obtained
combining results from [3, 26, 44]) provides one of them.

Theorem 6. Let Γ be a finite set of relations on A such that Γ is a core. Then
the following are equivalent:

(1) V(A) omits the unary or affine types;
(2) Pol(Γ) contains a 3-ary idempotent operation f and a 4-ary idempotent

operation g such that for all a, b ∈ A,

f(a, a, b) = f(a, b, a) = f(b, a, a) = g(a, a, a, b) = · · · = g(b, a, a, a);

(3) CSP(Γ) has bounded width.

3. Algebraic reductions

Let Γ be any finite set of operations on A. We start by observing that if Γ is not
a core then we can easily define another constraint language Γ′ on a smaller domain
such that CSP(Γ) and CSP(Γ′) behave identically with respect to approximation.
Indeed, let e be any non-surjective unary operation in Pol(Γ) and define Γ′ to be
{e(R) | R ∈ Γ} where e(R) = {e(a) | a ∈ R} (recall that e is applied component-
wise). Since e is not surjective, the domain of Γ′ is a proper subset of A. For every
instance I of CSP(Γ), one can construct an ’equivalent’ instance I ′ of CSP(Γ′).
Define I ′ to be the instance with the same set of variables as I and that contains,
for every constraint (v, R) in I the constraint (v, e(R)). Every assignment for
I can be transformed into an assignment for I ′ satisfying the same number of
constraints by composing it with e and, conversely, every assignment for I ′ can be
transformed into an assignment for I by composing it with e (this is because, as e
preserves Γ, e(e(R)) ⊆ R for every R ∈ Γ). Hence, one can use any polynomial-time
algorithm that approximates CSP(Γ) to obtain a polynomial-time algorithm that
approximates CSP(Γ′) with the same error function and vice versa.

This implies that if we want to explore the robust approximation of constraint
satisfaction problems we only need to consider those constraint languages that are
cores.
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The algebraic-based approach to robust approximation relies on the next theo-
rem. It says that the algebraic structure of the set of operations that preserve a
core Γ characterizes in a very tight way how its associated constraint satisfaction
problem, CSP(Γ), behaves with respect to robust approximation.

Theorem 7. Let Γ be a finite set of relations on a finite set A such that Γ is a
core. Let A denote the full idempotent reduct of the algebra associated to Γ. Let
C be an algebra in V(A), and let Γ0 be a finite set of relations invariant under the
operations in C. Then CSP(Γ0) ≤RA CSP(Γ) whenever

(1) eq ∈ Γ or
(2) C ∈ HS(A) and every relation in Γ0 is irredundant.

It seems plausible that, for every constraint language Γ, CSP(Γ ∪ {eq}) ≤RA

CSP(Γ). If it is the case then Theorem 7 could be strengthened.
This section is devoted to the proof of Theorem 7. The proof is obtained via a

chain of simple reductions. Both the proof structure and most of the arguments
are fairly standard in the algebraic approach to CSP.

Lemma 1. Let Γ be a finite set of relations on A and let R be a relation pp-definable
from Γ without equality. Then CSP(Γ ∪ {R}) ≤RA CSP(Γ).

Proof. Let ϕ(x1, . . . , xk) be a primitive positive formula defining R from Γ. Then,
ϕ is of the form ∃y1, . . . , yl ψ(x1, . . . , xk, y1, . . . , yl) where ψ is the quantifier-free
part of ϕ. The heart of the proof is the observation that ψ can be alternatively
seen as an instance of CSP(Γ). More precisely, we define the instance associated
to ψ, Iψ, as the instance that has variables x1, . . . , xk, y1, . . . , yl and contains for
every atomic formula S(v1, . . . , vr) in ψ, the constraint ((v1, . . . , vr), S). It follows
that for any assignment s : {x1, . . . , xk, y1, . . . , yl} → A, s is a solution of Iψ if and
only if ψ(s(x1), . . . , s(xk), s(y1), . . . , s(yl)) holds.

LetK be the number of atomic formulas in ψ. Assume that there is a polynomial-
time algorithm ALG that (1−ϵ, 1−f(ϵ))-aproximates CSP(Γ) for all ϵ ≥ 0. We shall
give a polynomial-time algorithm that (1−ϵ, 1−Kf(ϵ))-approximates CSP(Γ∪{R})
for all ϵ ≥ 0.

Let I be an instance of CSP(Γ ∪ {R}). Our algorithm starts by constructing in
polynomial time an instance I ′ of CSP(Γ) ’equivalent’ to I.

Initially place in instance I ′ K copies of every constraint in I whose constraint
relation belongs to Γ. Then, for every constraint C of the form ((v1, . . . , vk), R)
(that is, whose constraint relation is R) in I, do the following: rename the variables
of ψ such that for every 1 ≤ i ≤ k, xi becomes vi and every yj , (1 ≤ j ≤ l) becomes
a different fresh (i.e., not used in I ′) variable. We refer to this new formula (which is
obviously logically equivalent to ψ) as ψC . Add to I ′ all constraints in the instance
associated to ψC .

Then, run algorithm ALG with input I ′. In polynomial time ALG will stop and
report an assignment t′. Output the assignment t obtained by projecting t′ to the
variables of I.

Let us determine the quality of t. Assume that there is an assignment s for I
that (1 − ϵ)-satisfies I. We claim that s can be extended to an assignment for I ′

that (1− ϵ)-satisfies I ′. Notice that every variable occurring in I ′ but not in I has
been introduced when replacing a constraint C of the form ((v1, . . . , vk), R) by the
constraints in IψC

. If s satisfies C then we can extend it over the fresh variables of
IψC in such a way that all constraints in IψC are satisfied. If, otherwise, s does not
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satisfy C then just extend it over the fresh variables of IψC
arbitrarily. Proceeding

in this way for every such constraint, we produce a complete assignment for I ′

that we call s′. Since every constraint unsatisfied by s gives rise to at most K
constraints unsatisfied by s′ and the total number of constraints in I ′ is K times
the total number of constraints in I, it follows that s′ (1 − ϵ)-satisfies I ′ as we
claimed.

The assignment returned by ALG, t′, is guaranteed to (1 − f(ϵ))-satisfy I ′.
Every constraint unsatisfied by t′ gives rise to at most one constraint unsatisfied by
t. Since the total number of constraints in I ′ is at most K times the total number
of constraints of I, it follows that assignment t (1−Kf(ϵ))-satisfies I.

As a byproduct of Lemma 1 we can state the following strengthened version of
the hardness results in [32, 31, 39], involving only irredundant relations, which will
be useful in our proofs.

Theorem 8. (Hardness results of Theorems and 1 and 3, restated)

(1) Let G be an Abelian group with more than one element and let Γ be the set
of all irredundant relations in 3EQ-LIN(G). There is no polynomial-time
algorithm that robustly solves CSP(Γ) unless P = NP.

(2) Let Γ be the set containing relations {0}, {1}, and {(x, y, z) | x ∧ y →
z}. There is no polynomial-time algorithm that (1 − ϵ, 1 − o(1/ log(1/ϵ)))-
aproximates CSP(Γ) for all ϵ ≥ 0 unless the UG conjecture is false.

(3) There is no polynomial-time algorithm that (1 − ϵ, 1 − o(
√
ϵ))-aproximates

CSP({̸=2})) for all ϵ ≥ 0 unless the UG conjecture is false.

Proof. (1) Follows from the fact that eq is pp-definable without equality from
irredundant relations in Γ (for example with ∃u, v (x+u+v = 0)∧ (y+u+v = 0))
and Theorem 1. (2) Follows from Theorem 3(2) and the well-known fact that one
can pp-define without equality any Horn clause using the relations in Γ. (3) This
is merely Theorem 3(4) which we restate here for convenience.

If µ : B → C is a surjective map and R is a k-ary relation on C, µ−1(R) is
defined to be the k-ary relation {b ∈ Bk | µ(b) ∈ R}.

Lemma 2. Let Γ0 be a finite set of relations on C, let µ : B → C be a surjective
map, and let Γ1 = {µ−1(R) | R ∈ Γ0}. Then CSP(Γ0) ≤RA CSP(Γ1)

Proof. This is straightforward. Let I0 be any instance of CSP(Γ0) with variables
V and let I1 be an instance of CSP(Γ1) obtained by replacing every constraint
relation R ∈ Γ0 by µ

−1(R). Every assignment s1 : V → B for I1 can be transformed
into an assignment s0 for I0 satisfying the same number of constraints by composing
it with µ. Similarly, any assignment s0 : V → C for I0 can be transformed into an
assignment s1 for I1 by setting s1(v) to be an arbitrary element in µ−1(s0(v)) for
every v ∈ V . It follows easily that one can use any polynomial-time algorithm that
approximates CSP(Γ1) to obtain a polynomial-time algorithm that approximates
CSP(Γ0) with the same error function.

IfR is a k-ary relation onAm (not onA) then the coordinatization ofR, coord(R),
is the (k ×m)-ary relation on A

coord(R) = {((a11, . . . , am1 , . . . , a1k, . . . , amk ) | ((a11, . . . , am1 ), . . . , (a1k, . . . , a
m
k )) ∈ R}

Lemma 3. Let Γ1 be a finite set of relations in Am and let Γ2 = {coord(R) | R ∈
Γ1}. Then CSP(Γ1) ≤RA CSP(Γ2).



ROBUST SATISFIABILITY FOR CSPS: HARDNESS AND ALGORITHMIC RESULTS 11

Proof. This is straightforward. Let I1 be an instance of Γ1 and let I2 be an
instance of Γ2 defined in the following way. For every variable v of I1, I2 contains
m variables v1, . . . , vm. Also, for every constraint ((v1, . . . , vk), R) in I1, I2 contains
the constraint ((v11 , . . . , v

m
1 , . . . , v

1
k, . . . , v

m
k ), coord(R)). Every assignment s2 of I2

can be transformed into an assignment s1 of I1 satisfying the same number of
constraints by just setting s1(v) = (s2(v

1), . . . , s2(v
m)) for every variable v in I1.

Similarly any assignment s2 of I2 can be transformed (by reversing the previous
transformation) to an assignment s1 of I1 satisfying again the same number of
constraints. It follows easily that one can use any polynomial-time algorithm that
approximates CSP(Γ2) to obtain a polynomial-time algorithm that approximates
CSP(Γ1) with the same error function.

The operators µ−1(R) and coord(R) interact very nicely with the algebraic con-
structions in a variety. In particular, the following lemma follows directly from the
definitions.

Lemma 4. Let A, B be algebras and let Γ be a finite set of relations on B compatible
with B. Then:

(1) If A is homomorphic to B via the surjective mapping µ : A → B then
µ−1(Γ) is compatible with A.

(2) If B is a subalgebra of A then Γ is compatible with A.
(3) If B = Am then coord(Γ) is compatible with A.

Lemma 5. Let Γ be a finite set of relations on A = {a1, . . . , an} such that Γ is a
core. Then CSP(Γ ∪ {{ai} | 1 ≤ i ≤ n}) ≤RA CSP(Γ).

Proof. We denote by Aut(Γ) the set of all unary operations in Pol(Γ) that are
one-to-one. Every member of Aut(Γ) is said to be an automorphism of Γ.

Let ϕ be the (quanitfier-free) pp-formula with free variables x1, . . . , xn defined
as

ϕ =
∧

S∈Γ,(ai1 ,...,aiρ(S)
)∈S

S(x1, . . . , xiρ(S)
)

The structure of the solutions of ϕ is easy to understand. In particular, for every
(b1, . . . , bn) ∈ An, ϕ(b1, . . . , bn) holds if and only if the mapping e : A→ A sending
ai to bi for every 1 ≤ i ≤ n belongs to Pol(Γ). Furthermore, since Γ is a core, the
later condition is equivalent to the fact that e is an automorphism of Γ.

Hence, the n-ary relation R = {(e(a1), . . . , e(an)) | e ∈ Aut(Γ)} is pp-definable
from Γ (without equality) via ϕ. Now, for every 1 ≤ i ≤ n consider the binary
relation eqi defined by the primitive positive formula

∃x1, . . . , xi−1, xi+1, . . . , xn R(x1, . . . , xi−1, y, xi+1, . . . , xn)∧
R(x1, . . . , xi−1, z, xi+1, . . . , xn)

It follows from the definition of eqi that {(ai, ai)} ⊆ eqi ⊆ eq.
Let Γ′ = Γ∪{R}∪{eqi | 1 ≤ i ≤ n}. It follows from Lemma 1 that CSP(Γ′) ≤RA

CSP(Γ). In what remains we shall show that CSP(Γ ∪ {{ai} | 1 ≤ i ≤ n}) ≤RA

CSP(Γ′) completing the proof.
Assume that there is a polynomial-time algorithm ALG that (1 − ϵ, 1 − f(ϵ))-

approximates CSP(Γ′) for all ϵ ≥ 0. We shall show how we can use ALG to obtain a
polynomial-time algorithm that (1−ϵ, 1−2f(ϵ))-approximates CSP(Γ∪{{ai} | 1 ≤
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i ≤ n}) for all ϵ in [0, β] for a fixed β. This immediately gives, for some K > 0, a
(1− ϵ, 1−Kf(ϵ))-approximation for all ϵ ≥ 0.

Let I be an instance of CSP(Γ ∪ {{ai} | 1 ≤ i ≤ n}) and let m be the number
of its constraints. Our algorithm starts by constructing in polynomial time an
instance I ′ of CSP(Γ′) in the following way. The set of variables of I ′ contains all
the variables of I in addition to n new variables v1, . . . , vn. Instance I ′ has 2m
constraints which are constructed in the following way:

(a) Place in I ′ every constraint in I whose constraint relation is not in {{ai} | 1 ≤
i ≤ n}.

(b) For every constraint in I of the form (v, {ai}) 1 ≤ i ≤ n, place in I ′ the
constraint ((v, vi), eqi).

(c) Place m copies of the constraint ((v1, . . . , vn), R) in I
′.

Assume that there is an assignment s that (1 − ϵ)-satisfies I. Let s′ be the
assignment for I ′ that acts as s on the variables in I and that sets s′(vi) = ai for
every 1 ≤ i ≤ n, and let C be any constraint in I ′. If C is added in step (a) then we
know that is satisfied by s′ whenever it is satisfied by s. If C is added in step (b) then
C is of the form ((v, vi), eqi), 1 ≤ i ≤ n. As (ai, ai) ∈ eqi we have that C is satisfied
by s′ whenever (v, {ai}) is satisfied by s. Finally, constraint ((v1, . . . , vn), R) is
always satisfied by s′ as the identity map is always an automorphism.

We conclude that s′ falsifies the same total number of constraints as s. It follows
that s′ is (1 − ϵ)-satisfiable as the total number of constraints in I ′ is larger than
that in I.

Now, run algorithm ALG with input I ′. In polynomial time ALG will stop
and report an assignment t′ that satisfies a (1 − f(ϵ))-fraction of the constraints
in I ′. By requiring ϵ to be small enough we can guarantee that (1 − f(ϵ)) > 1/2
which implies that t′ must necessarily satisfy constraint R(v1, . . . , vn). Consider the
mapping e : A→ A defined as e(ai) = t′(vi). It follows that (e(a1), . . . , e(an)) ∈ R
and hence e is an automorphism of Γ. It follows that e−1 is also an automorphism
of Γ and, by Theorem 4, of Γ′ as well. Consequently, the assignment t defined as
t(v) = e−1(t′(v)) satisfies exactly the same constraints in I ′ as t′. Additionally,
t(vi) = ai holds for every 1 ≤ i ≤ n. Output the assignment obtained by projecting
t to the variables of I. We shall prove that t (and hence its projection to the
variables of I) (1− 2f(ϵ))-satisfies I.

Let C be any constraint in I. If the constraint relation of C is not in {{ai} | 1 ≤
i ≤ n} then C must also appear in I ′. Otherwise C is of the form (v, {ai}),
1 ≤ i ≤ n. In this case, as eqi ⊆ eq and t(vi) = ai it follows that if t satisfies
((v, vi), eqi) then t must satisfy (v, {ai}) as well. It follows that the total number
of clauses falsified by t (in I) is not larger than the number of clauses falsified by
t (in I ′). Since the total number of constraints in I ′ is twice the total number of
constraints in I we conclude that t satisfies at least a (1 − 2f(ϵ))-fraction of the
constraints in I.

We are finally in a position to prove Theorem 7.
Proof. (of Theorem 7)

(1) Since C ∈ V(A), there exist a power, Am, of A, and a subalgebra, B, of
Am such that there is an surjective homomorphism µ from B to C. Let Γ1 =
{µ−1(R) | R ∈ Γ0} and let Γ2 = {coord(R) | R ∈ Γ1}. By Lemma 2, CSP(Γ0) ≤RA

CSP(Γ1) and, by Lemma 3, CSP(Γ1) ≤RA CSP(Γ2). Furthemore, by Lemma 4, Γ2

is compatible with A.
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Let Γ3 = Γ ∪ {{a} | a ∈ A} and let g be any operation preserving Γ3 (and
hence preserving Γ as well). It follows from the fact that g preserves {a} for
every a ∈ A that g should be idempotent. It follows that g belongs to the full
idempotent reduct of Γ, that is, A. Since Γ2 is compatible with A it follows that
g preserves Γ2. We have just seen that Pol(Γ3) ⊆ Pol(Γ2). It follows by Theorem
4(1) and Lemma 1 that CSP(Γ2) ≤RA CSP(Γ3). Finally, Lemma 5 guarantees that
CSP(Γ3) ≤RA CSP(Γ).

(2) After inspecting the previous argument one realizes that the condition eq ∈ Γ
is only required when applying Theorem 4(1) to prove CSP(Γ2) ≤RA CSP(Γ3).
This can be overcome by noticing that since C ∈ HS(A) we can assume m = 1 and,
hence, Γ2 = Γ1. Observe also that if R is an irredundant relation in Γ0 then µ−1(R)
must necessarily be irredundant as well. Then, in this case CSP(Γ2) ≤RA CSP(Γ3)
follows from Theorem 4(2) and Lemma 1.

Combining Theorem 7 with Theorems 1 and 3 we obtain the following hardness
results.

Theorem 9. Let Γ be a finite set of relations on A such that Γ is a core and let A
be the algebra associated to Γ. Then:

(1) If V(A) admits the unary or affine types then CSP(Γ) is not robustly solvable
unless P = NP.

(2) If V(A) admits the semilattice type then CSP(Γ) is not robustly solvable
with polynomial loss unless the UG conjecture is false.

Proof. It follows from ([34],Chapter 5) that if V(A) satisfies one of the conditions
of items (1) or (2) then so does its full idempotent reduct.

In case (1), it follows from Theorems 5 and 7 that there exists an abelian group
G with more than one element such that CSP(Γ1) ≤RA CSP(Γ) where Γ1 is the set
of irredundant relations in 3EQ-LIN(G). Item (1) follows by composition of ≤RA

and Theorem 8(1).
In case (2) let Γ2 be the constraint language containing {0}, {1}, and {(x, y, z) | x∧

y → z}. Since all relations in Γ2 are irredundant it follows from Theorems 5 and 7
that CSP(Γ2) ≤RA CSP(Γ). Item (2) follows by composition of ≤RA and Theorem
8(2).

Item (1) of Theorem 9 is the ’easy’ direction of the Guruswami-Zhou conjecture.
Combining it with with Theorems 2 and 6 one obtains the full proof.

4. Dualities

In this section we present a combinatorial view on CSPs and local consistency
algorithms, in the form of dualities, and link it with polymorphisms. The combina-
torial description of dualities is not used in approximation algorithms in Section 5,
but it helps to place our results into a uniform perspective. We refer the reader to
survey [11] for more information about dualities.

A (finite relational) structure is a tuple A = (A,R1, . . . , Rm) where A, the
universe of A, is a non-empty set, and for each 1 ≤ i ≤ m, Ri is a relation on A.
Let I = (V, S1, . . . , Sm) and A = (A,R1, . . . , Rm) be similar structures, meaning
that they have the same number of relations and that ρ(Ri) = ρ(Si) for every
1 ≤ i ≤ m. A map f : V → A is a homomorphism from I to A if f(Si) ⊆ Ri for
every 1 ≤ i ≤ m, where for every relation R we have

f(R) = {f(a) | a ∈ R}.
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We write I → A if there is a homomorphism from I to A and I ̸→ A otherwise.
Two structures A and A′ are said to be homomorphically equivalent if A → A′ and
A′ → A.

The constraint satisfaction problem can be rephrased in terms of homomorphisms
as follows: If Γ = {R1, . . . , Rm} is a finite set of relations on A and I = (V,A, C)
is an instance of CSP(Γ), let A be the structure (A,R1, . . . , Rm) and let I =
(V, S1, . . . , Sm) be the structure with universe V and where for every 1 ≤ i ≤ m,
Si contains the scopes of all constraints in C whose constraint relation is Ri. It is
easy to verify that any assignment s : V → A satisfies all constraints in C if and
only if s is a homomorphism from I to A.

A set O of structures is called an obstruction set for A if for any structure I
similar to A, I → A if and only if O ̸→ A for every O ∈ O.

In graph theory, the treewidth of a graph is a natural number that measures
how much the graph resembles a tree. This measure, as many others, is lifted in a
natural way to structures.

For 0 ≤ j ≤ k, a structure I = (V, S1, . . . , Sm) is said to have treewidth at most
(j, k) if there is a tree T , called a tree-decomposition of I, such that

(1) the nodes of T are subsets of V of size at most k,
(2) adjacent nodes can share at most j elements,
(3) nodes containing any given element form a subtree, and
(4) for any tuple in any relation in I, there is a node in T containing all elements

from that tuple.

If T is a path then it is called a path-decomposition of I and I is said to have
pathwidth at most (j, k).

Definition 1. A finite set Γ of relations on A is said to have (j, k)-treewidth
duality if the structure (A,Γ) has an obstruction set consisting only of structures
of treewidth at most (j, k). We say that Γ has j-treewidth duality if it has (j, k)-
treewidth duality for some k ≥ j and that Γ has bounded treewidth duality if it has
j-treeduality for some j ≥ 0.

The following result establishes a fundamental connection between width and
dualities.

Theorem 10. [25, 40] Let 0 ≤ j ≤ k and let Γ be a finite set of relations on A.
The following conditions are equivalent:

(1) CSP(Γ) has width (j, k);
(2) Γ has (j, k)-treewidth duality.

Besides bounded treewidth duality many other types of dualites have been ex-
plored in the study of CSP. We shall present some of them that are particularly
relevant to the present work.

4.1. Tree duality. As in [46], the incidence multigraph of a structure I = (V, S1, . . . , Sm),
denoted Inc(I), is defined as the bipartite multigraph with parts V and Block(I),
where Block(I) consists of all pairs (Si,v) such that 1 ≤ i ≤ m and v ∈ Si, and
with edges ev,i,Z joining v ∈ V to Z = (S, (v1, . . . , vr)) ∈ Block(A) when vi = v.
Then I is said to be a tree if its incidence multigraph is a tree (in particular, it
has no multiple edges). For a tree I, we say that an element of V is a leaf if it is
incident to at most one block in Inc(I). A block of I (i.e., a member of Block(I)) is
said to be pendant if it is incident to at most one non-leaf element, and it is said to
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be non-pendant otherwise. For example, any block with a unary relation is always
pendant. If I has just one binary relation, i.e. is a digarph, then I is tree in the
above sense if and only if it is an oriented tree in the usual sense of graph theory.

We shall say that a structure has tree duality if it has an obstruction set consisting
of tree structures. See [11] for examples of structures with tree duality.

Let (A,Γ) be a structure. Let AP be the set of all non-empty subsets of A. If R
is a r-ary relation on A then we define relation, RP , as the r-ary relation on AP

RP = {(pr1 S, . . . ,prr S) | ∅ ̸= S ⊆ R}

It follows from the definition of RP that for every (S1, . . . , Sr), (T1, . . . , Tr) ∈ (AP )
r

{(S1, . . . , Sr), (T1, . . . , Tr)} ⊆ RP ⇒ (S1 ∪ T1, . . . , Sr ∪ Tr) ∈ RP (3)

Let ΓP be the constraint language on AP defined as ΓP = {RP | R ∈ Γ}.

Theorem 11. [25] Let Γ be a finite set of relations on A. The following conditions
are equivalent:

(1) (A,Γ) has tree duality;
(2) (A,Γ) had 1-treewidth duality;
(3) (A,Γ) is homomorphically equivalent to (AP ,ΓP );
(4) Γ totally symmetric polymorphisms of all arities.
(5) CSP(Γ) has width 1.

Width 1 problems are closely related with arc-consistency, one of main types of
local consistency [22].

4.2. Pathwidth Duality. By replacing ”treewidth” with ”pathwidth” throughout
Definition 1 one obtains the corresponding notions of pathwidth dualities. Bounded
path duality was introduced in [20] as a tool to study CSPs solvable in non-
deterministic logarithmic space. See [11, 13, 14, 20] for examples of structures
with this duality. The following theorem, due to Larose and Tesson [42], gives a
general necessary condition for bounded pathwidth duality.

Theorem 12. Let Γ be a finite set of relations on A such that Γ is a core and let
A be the algebra associated to Γ. If V(A) admits the unary, affine, or semilattice
types then Γ does not have bounded pathwidth duality.

The comparison of Theorems 9 and 12 hints at a link between pathwidth du-
ality and robust approximation with polynomial loss as both properties share the
same forbidden typesets (and the same basic forbidden structures, 3EQ-LIN(G)
and 3-HORN). In view of this, it seems reasonable to investigate whether one can
robustly solve with polynomial loss a CSP(Γ) whenever its constraint language, Γ,
has pathwith duality. Some sufficient conditions for bounded pathwidth duality
are known, we shall now present the two most general ones (to the best of our
knowledge).

It was shown in [21] that a finite set Γ of relations on A has bounded pathwidth
duality whenever it is preserved by a majority operation, and this result has been
recently generalized in [5] to an NU operation of any arity. In a different direction,
[13] characterizes those finite sets Γ of relations that possess an obstruction set
consisting on trees of bounded pathwidth. In Section 5 we show that, for every
such Γ, CSP(Γ) is robustly solvable with polynomial loss. In what follows we shall
describe in detail some of the results in [13].
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We call a operation f of arity k ·m · n on A k-layered m-block symmetric if it
satisfies the following condition:

f(

S
(1)
1︷ ︸︸ ︷

x
(1)
11 , . . . , x

(1)
1m, . . . ,

S(1)
n︷ ︸︸ ︷

x
(1)
n1 , . . . , x

(1)
nm, . . . ,

S
(k)
1︷ ︸︸ ︷

x
(k)
11 , . . . , x

(k)
1m, . . . ,

S(k)
n︷ ︸︸ ︷

x
(k)
n1 , . . . , x

(k)
nm) =

= f(y
(1)
11 , . . . , y

(1)
1m︸ ︷︷ ︸

T
(1)
1

, . . . , y
(1)
n1 , . . . , y

(1)
nm︸ ︷︷ ︸

T
(1)
n

, . . . , y
(k)
11 , . . . , y

(k)
1m︸ ︷︷ ︸

T
(k)
1

, . . . , y
(k)
n1 , . . . , y

(k)
nm︸ ︷︷ ︸

T
(k)
n

)

whenever {S(l)
1 , . . . , S

(l)
n } = {T (l)

1 , . . . , T
(l)
n } for each “level” l where, for all i, S

(l)
i =

{x(l)i1 , . . . , x
(l)
im} and T

(l)
i = {y(l)i1 , . . . , y

(l)
im}. This allows us to write such an operation

as f(S1, . . . ,Sk), where Si = {S(i)
1 , . . . , S

(i)
n } for all i.

Let us call a sequence S1, . . . ,Sk nested if either k = 1 or, for each 1 ≤ j < k,
every set in Sj+1 is a subset of every set in Sj . We say that a k-layered m-block
symmetric operation f is a k-layered m-ABS operation if the following absorption
property holds: for any 1 ≤ i ≤ k and for any nested sequence S1, . . . ,Sk we have

f(S1, . . . ,Si, . . . ,Sk) = f(S1, . . . ,S ′
i, . . . ,Sk)

where S ′
i is any subset of Si obtained by removing any element (i.e., a subset of A)

in Si that entirely contains some other element in Si.

Example 1. Let A = {0, 1}k. In this example we will think of elements of A as
k-columns of Boolean values. Consider the operation f on A such that

f(x
(1)
11 , . . . , x

(1)
1k , . . . , x

(1)
n1 , . . . , x

(1)
nm, . . . , x

(k)
11 , . . . , x

(k)
1m, . . . , x

(k)
n1 , . . . , x

(k)
nm) =

(
∨n
i=1

∧m
j=1 x

(1)
ij [1]) ∧ (

∧n
i=1

∧m
j=1 x

(2)
ij [1]) ∧ . . . ∧ (

∧n
i=1

∧m
j=1 x

(k)
ij [1])

(
∨n
i=1

∧m
j=1 x

(2)
ij [2]) ∧ . . . ∧ (

∧n
i=1

∧m
j=1 x

(k)
ij [2])

...

(
∨n
i=1

∧m
j=1 x

(k)
ij [k])


where x

(w)
ij [l] denotes the l-th component of variable x

(w)
ij .

It can be directly verified that f is a k-layered m-ABS operation.

The following theorem follows from [13]:

Theorem 13. Let Γ be a finite set of relations on A. Then the following are
equivalent:

(1) (A,Γ) has an obstruction set consisting on trees of bounded pathwidth;
(2) there exists some k ≥ 1 such that for every m,n ≥ 1, Γ is invariant under

a mkn-ary k-layered m-ABS operation.

4.3. Caterpillar and jellyfish dualities. The particular case of 1-layered ABS
operations gives rise to a well-understood type of dualities called caterpillar duality.
In graph theory, a caterpillar is a tree which becomes a path after all its leaves are
removed. Following [43], we say that a tree is a caterpillar if each of its blocks is
incident to at most two non-leaf elements, and each element is incident to at most
two non-pendant blocks. Informally, a caterpillar has a body consisting of a chain
of elements v1, . . . , vn+1 with blocks B1, . . . , Bn where Bi is incident to vi and vi+1

(i = 1, . . . , n), and legs of two types: (i) pendant blocks incident to exactly one of
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the elements v1, . . . , vn+1, together with some leaf elements incident to such blocks,
and (ii) leaf elements incident to exactly one of the blocks B1, . . . , Bn. Examples
of structures with caterpillar duality can be found in [14].

Theorem 14. [14] Let Γ be a finite set of relations on A. Then the following are
equivalent:

(1) (A,Γ) has caterpillar duality;
(2) (A,Γ) is homomorphically equivalent to a structure with lattice polymor-

phisms;
(3) for every m,n ≥ 1, Γ is invariant under a mn-ary 1-layered m-ABS oper-

ation.

Note that robust satisfiability for structures with lattice polymorphisms was
studied in [41], where a robust algorithm with linear loss for the corresponding
CSPs is presented. By Lemma 6 below, this result extends to all structures with
caterpillar duality. We will further extend this result to a subclass of structures
covered in Theorem 13.

We say that a non-leaf a ∈ A of a tree structure A is extreme if it is incident to
at most one non-pendant block (i.e., it has at most one other non-leaf at distance
two from it) in Inc(A), and we say that a pendant block is extreme if either it is
the only block of A or else it is adjacent to a non-leaf, and this (unique) non-leaf is
extreme. Finally, we say that an element is terminal if it is isolated (i.e., does not
appear in any relation inA) or it appears in an extreme pendant block. We say that
a tree structure A is a jellyfish if it is a one-element structure with empty relations
or it is obtained from one tuple (in one relation) a, called the body of the jellyfish,
and a family of caterpillars by identifying one terminal element of each caterpillar
with some element in the tuple a. It is not hard to see that a jellyfish structure is a
tree of bounded pathwidth. A structure has jellyfish duality if it has an obstruction
set consisting of jellyfish structures. Examples of structures with jellyfish duality
can be found in [14]. It can be checked using results of [13, 14] that each structure
with jellyfish duality has an 2mn-ary 2-layered m-ABS polymorphism for all m,n.

Theorem 15. [14] Let Γ be a finite set of relations on A. Then the following are
equivalent:

(1) (A,Γ) has jellyfish duality;
(2) (A,Γ) is homomorphically equivalent to a structure (A′,Γ′) with polymor-

phism x ⊔ (y ⊓ z) for some distributive lattice (A′,⊔,⊓).

5. Positive Approximation Results

In this section we show that each width 1 CSP(Γ) admits a robust (1 − ϵ, 1 −
O(1/ log(1/ϵ)))-approximation algorithm and describe two subclasses of width 1
CSPs where the approximation guarantee can be improved to O(ϵ1/k) with k > 1
and O(ϵ), respectively.

Lemma 6. If structures A = (A,Γ) and A′ = (A′,Γ′) are homomorphically equiv-
alent then CSP(Γ) ≤RA CSP(Γ′) and CSP(Γ′) ≤RA CSP(Γ).

Proof. Since the two structures are homomorphically equivalent, the relations in
Γ and Γ′ are in one-to-one correspondence. If I is an instance of CSP(Γ), one can
construct an equivalent instance of CSP(Γ′) by simply replacing each constraint
relation in I by the corresponding relation from Γ′. If s is an assignment for I
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and f is a homomorphism from A to A′ then it is easy to check that f ◦ s is an
assignment for I ′ that satisfies all constraints satisfied by s. It follows that, for any
ϵ, I is (1 − ϵ) satisfiable if and only if I ′ is (1 − ϵ) satisfiable, and one can easily
switch between assignments for I and I ′ by using homomorphisms.

Theorem 16. Let Γ be a finite set of relations on A such that CSP(Γ) has width 1.
There is a polynomial-time algorithm that (1− ϵ, 1−O(1/ log(1/ϵ)))-approximates
CSP(Γ) for every ϵ ≥ 0.

Proof. By Theorem 11 and Lemma 6, it is enough to prove the theorem for ΓP .
Now, fix an arbitrary order {a1, . . . , ak} on A and rename AP by replacing every
element S of AP by its indicator k-ary tuple, namely, the tuple (b1, . . . , bk) ∈ {0, 1}k
such that bi = 1 if ai ∈ S and bi = 0 otherwise. Let ΓC be the finite set of
relations on {0, 1} defined as ΓC = {coord(RP ) | RP ∈ ΓP } where coord(·) is the
coordinazation operator introduced in Section 3. It follows from (3) that ΓC is
preserved by the disjunction operation ∨ : {0, 1}2 → {0, 1}. It is well known that
every boolean relation invariant under ∨ can be expressed as a conjunction of dual
Horn clauses. It follows from Lemma 1 and Theorem 3 that there is a polynomial-
time algorithm that (1 − ϵ, 1 − O(1/ log(1/ϵ)))-approximates CSP(ΓC) for every
ϵ ≥ 0. The result then follows from Lemma 3.

Which structures admit an efficient robust algorithm with polynomial loss? As
mentioned in Section 4 the properties of robust approximation with polynomial loss
and of pathwidth duality share the same forbidden typesets. It seems natural then
to try to prove that every constraint language Γ with bounded pathwidth duality
gives rise to a constraint satisfaction problem, CSP(Γ) that is robusly solvable with
polynomial loss. The next theorem gives a partial result in this direction. However,
current understanding suggests that it is quite feasible that the theorem covers all
constraint languages Γ with tree duality such that CSP(Γ) is robustly solvable with
polynomial loss.

Theorem 17. If Γ and k ≥ 1 satisfy condition (2) from Theorem 13 then there
is a polynomial-time algorithm that (1 − ϵ, 1 − O(ϵ1/k))-approximates CSP(Γ) for
every ϵ ≥ 0.

Proof. Let I = (V,A, C) be any instance of CSP(Γ) and assume that I is
(1− ϵ′)-satisfiable for some ϵ′ ≥ 0. Start by solving the LP relaxation of I, BLP(I),
determining an optimal solution. Let 1−ϵ the value of the goal function achieved by
the optimal solution. Since BLP(I) is a relaxation of the integer canonical program
for I it follows that ϵ ≤ ϵ′. For every constraint C = (v, R) ∈ C we shall use ϵC to
denote 1− pC(R).

Let H > 1 be a constant. To prove the present theorem we could fix straight
away H to be, say, 2, but it will be handy later, when proving Theorem 18 to be
able to reuse the analysis with a different value for H. Let L be the maximum arity
of any relation in Γ, let J = L2|A| + 1, let b = ϵ/J , and let z = J(Hb)1/k.

For every θ = {1, . . . , ⌊z−1⌋} and every 0 ≤ i ≤ k define M i
θ as

M i
θ =

{
0 if i = 0
b(Jθ)i otherwise

We shall obtain a solution by applying the following randomized rounding algo-
rithm to the optimal solution of the LP:

(1) Choose θ ∈ {1, . . . , ⌊z−1⌋} uniformily at random.
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(2) For every v and every 0 ≤ i ≤ k define Siv = {S ⊆ A | pv(S) ≥ 1 −M i
θ}.

Since M i
θ ≤Mk

z−1 = H−1 < 1 it follows that ∅ ̸∈ Siv.
(3) Let f be an mkn-ary k-layered m-ABS operation that preserves Γ with

m = L|A| and n = L(2|A| − 1). Output the assignment t : V → A defined
by t(v) = f(minS1

v , . . . ,minSkv )) where minSiv contains all those sets in Siv
that are minimal with respect to inclusion. By the properties of f we see
that t is well-defined.

We shall prove for each constraint C ∈ C that the probability that C is falsified
by assignment t is at most Dϵ1/k(1 + ϵC/ϵ) where D = 2kHJ2−1/k. It follows
from linearity of expectation that the expected fraction of constraints falsified by
t is at most Dϵ1/k(1 + avg{ϵC}/ϵ) = 2Dϵ1/k. Note that as z−1 depends on ϵ it
can be, in principle, very large. To overcome it we observe that we can safely
replace any value of ϵ ≤ (4|C|D)−k with (4|C|D)−k as the fraction of falsified con-
straints, 2Dϵ1/k, would be at most 1/(2|C|), meaning that, indeed, all constraints
are satisfied. Hence, we can assume that z−1 is bounded by a polynomial in the
input size. In consequence, we can even make the algorithm deterministic (besides
polynomial-time) by trying all choices for θ and selecting the one producing the
best assignment.

Let C = ((v1, . . . , vr), R) be a constraint in C. We shall see that the probability
that C is falsified by t is at most Dϵ1/k(1 + ϵC/ϵ) completing the proof. This will
follow from Lemmas 7 and 9 below.

Definition 2. A choice of θ is good for C if

M1
θ ≥ ϵC (4)

and for every variable v in the scope of C, every 1 ≤ i ≤ k, and every S ⊆ A the
two following conditions hold:

M1
θ ̸∈ [1− pv(S)− ϵC , 1− pv(S)) (5)

θ + 1 ̸= ⌈(1− pv(S))
1/ib−1/iJ−1⌉ (6)

Lemma 7. The probability that θ is not good for C is at most Dϵ1/k(1 + ϵC/ϵ).

Proof. We shall see how many out of the ⌊z−1⌋ choices for θ falsify each one of
the conditions of definition 2. The number of values for θ that falsify (4) is ⌊ ϵCJb ⌋.
For every v in the scope of C, every 1 ≤ i ≤ k and every S ⊆ A, there is only
one choice that falsifies (6) and 1 + ⌊ ϵCJb ⌋ choices that falsify (5). Hence the total
number of choices that make θ not good is at most

2Lk2|A| + (Lk2|A| + 1)
ϵC
Jb

≤ 2kJ (1 + ϵC/ϵ)

The bound of the lemma is obtained dividing it by z−1.
The following lemma will be useful.

Lemma 8. Assume that θ is good for C. Then for every variable v in the scope,
every 1 ≤ i ≤ k, and every S ⊆ A: if prv(S) ≥ 1 − ϵC −M i

θ − (J − 1)M i−1
θ then

pv(S) ≥ 1−M i
θ.

Proof. Case i = 1 follows from (5) and M0
θ = 0. Assume now that i > 1.

Condition (6) can be rewritten as (1 − pv(S))
1/ib−1/iJ−1 ̸∈ (θ, θ + 1] which again

can be rewriten as pv(S) ̸∈ [1−b(J(θ+1))i, 1−b(Jθ)i) = [1−M i
θ+1, 1−M i

θ). Now,

assume that pv(S) ≥ 1− ϵC −M i
θ − (J − 1)M i−1

θ . We have that M i−1
θ ≥M1

θ ≥ ϵC
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where the second inequality is by (4). It follows that pv(S) ≥ 1−M i
θ − JM i−1

θ ≥
1−M i

θ+1 where the second inequality follows from M i
θ+1 = b(J(θ+1))i ≥ bJ i(θi+

θi−1) = M i
θ + JM i−1

θ . Since pv(S) ̸∈ [1 −M i
θ+1, 1 −M i

θ) it follows that pv(S) ≥
1−M i

θ.

Lemma 9. It θ is good for C then C is satisfied by t.

Proof. For every 0 ≤ i ≤ k − 1 and every v ∈ V define Giv = ∩S∈Si
v
S. Let

1 ≤ i ≤ k, let 1 ≤ j, l ≤ r and let S ∈ Sivj . We shall prove that:

prl(R ∩ (Gi−1
v1 × · · · ×Gi−1

vj−1
× (S ∩Gi−1

vj )×Gi−1
vj+1

× · · · ×Gi−1
vr )) ∈ Sivl (7)

Relation R′ = R ∩ (Gi−1
v1 × · · · × Gi−1

vj−1
× (S ∩ Gi−1

vj ) × Gi−1
vj+1

× · · · × Gi−1
vr ) can

be written down as the intersection of R, (Aj−1 × S × Ar−j), and all relations
of the form (As−1 × S′ × Ar−s) where 1 ≤ s ≤ r and S′ ∈ Si−1

vs . By condition

(2) of BLP(I) it follows that pC(A
j−1 × S × Ar−j) = pvj (S) ≥ 1−M i

θ. Similarly,

we have pC(A
s−1 × S′ × Ar−s) ≥ 1 −M i−1

θ for every 1 ≤ s ≤ r and S′ ∈ Si−1
vs .

It follows from the union bound that pC(R
′) ≥ 1 − ϵC −M i

θ − r2|A|M i−1
θ . This

quantity is, by Lemma 8, at least 1 −M i
θ. It follows by consistency of marginals

that pvl(prlR
′) ≥ 1−M i

θ and hence that prlR
′ ∈ Sivl .

We are ready to show that that (t(v1), . . . , t(vr)) ∈ R. The rest of the proof
follows that of Lemma 22 in [13]. We shall build a matrix N as follows. Recall that
m = L|A|. For every 1 ≤ j ≤ r, every 1 ≤ i ≤ k, and every set S ∈ Sivj construct a

(m× r)-matrix N i
j,S whose entries are elements of A such that:

(1) each row of N i
j,S is a tuple of R, and

(2) for any 1 ≤ s ≤ r the set of entries in the s-th column is exactly

prs(R ∩ (Gi−1
v1 × · · · ×Gi−1

vj−1
× (Gi−1

vj ∩ S)×Gi−1
vj+1

× · · · ×Gi−1
vr ))

That is, the matrix can be seen as a sequence of m tuples t1, . . . , tm (the rows) of R
such that {t1, . . . , tm} = R∩ (Gi−1

v1 ×· · ·×Gi−1
vj−1

× (Gi−1
vj ∩S)×Gi−1

vj+1
×· · ·×Gi−1

vr ).

This is easily achieved by placing in the matrix all tuples in R ∩ (Gi−1
v1 × · · · ×

Gi−1
vj−1

× (Gi−1
vj ∩ S)×Gi−1

vj+1
× · · · ×Gi−1

vr ) and repeating some of them if necessary.

By condition (7) the set of all entries in the l-th column of N i
j,S belongs to Sivl and,

by construction, it must be a subset of Gi−1
vl

. It follows that if S is minimal in Sivj
then the set of entries in the j-th column is precisely S.

Recall that n = L(2|A|−1). For every 1 ≤ i ≤ k construct a (mn× r)-matrix N i

as follows. It is divided into n layers of consecutive m rows, each layer is a matrix
N i
j,S for some 1 ≤ j ≤ r and some S ∈ Sivj , and each matrix of this form appears

as a layer. By the choice of n, this is possible. For every 1 ≤ i ≤ k and every
1 ≤ j ≤ r we shall denote by T i

vj the set containing all those T ⊆ A such that T

is the set of all entries of the jth column for some matrix N i
j,S included in N i. By

the remarks made after the construction of N i
j,S we have that min T i

vj = minSivj
for every 1 ≤ j ≤ r and 1 ≤ i ≤ k.

Finally form the (mkn×r)-matrix N whose firstmn rows are occupied by matrix
N1, next mn rows are occupied by matrix N2 and so on. Let (a1, . . . , ar) be the
result of applying f column-wise to N , which must be tuple of R since f preserves
R. To complete our proof we shall see that (a1, . . . , ar) is precisely (t(v1), . . . , t(vr)).

Let j ∈ {1, . . . , r}. By the construction of N it follows that aj = f(T 1
vj , . . . , T

k
vj ).

By the construction of the matrices, for every 1 ≤ i ≤ k, every element in T i
vj is
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a subset of Gi−1
vj implying that (T 1

vj , . . . , T
k
vj ) is a nested sequence. It follows by

the absorption property that f(T 1
vj , . . . , T

k
vj ) = f(min T 1

vj , . . . ,min T k
vj ) and since

min(T i
vj ) = min(Sivj ) for every 1 ≤ i ≤ k it follows that f(min T 1

vj , . . . ,min T k
vj ) =

f(minS1
vj , . . . ,minSkvj ) = t(vj).

This completes the proof of Theorem 17.

The case k = 1 of Theorem 17 (i.e. for structures with caterpillar duality)
has been previously shown in [41]. With some local modifications in the proof
of Theorem 17 we can extend this result to structures with jellyfish duality. Our
result gives the currently most general sufficient condition for robust solvability
with linear loss. It will also be useful in Section 6.

Theorem 18. If (A,Γ) has jellyfish duality then there is a polynomial-time algo-
rithm that (1− ϵ, 1−O(ϵ))-aproximates CSP(Γ) for every ϵ ≥ 0.

Proof. By Lemma 6 and Theorem 15, we can assume that Γ is preserved by
x ⊔ (y ⊓ z) for some distributive lattice (A,⊔,⊓). In the proof of Theorem 17, set

H > 2|A|L, k = 1, and modify step (3) of the rounding algorithm by setting t(v) to
be ⊓S∈S1

v
⊔S where ⊔S = ⊔a∈S a. It is only required to adapt the proof of Lemma

9 to show that if θ is good for C then C is satisfied by t. Construct matrix N = N1

as in the proof of Theorem 17.
In our proof we shall use the following two properties of lattices.

(i) x0 ⊔ ((x11 ⊔ · · · ⊔ x1m) ⊓ · · · ⊓ (xn1 ⊔ · · · ⊔ xnm)) = (x11 ⊔ · · · ⊔ x1m) ⊓ · · · ⊓
(xn1 ⊔ · · · ⊔ xnm) whenever x0 ∈ {xu1, . . . xum} for every u ∈ {1, . . . , n}

(ii) (x11 ⊔ · · · ⊔ x1m) ⊓ · · · ⊓ (xn1 ⊔ · · · ⊔ xnm) is a 1-layered m-ABS operation.

Both properties follow directly from the definitions.
Now, let b = (b1, . . . , br) the any tuple in Ar with pC(b) ≥ 1/|A|r which must

necessarily exist because pC(A
r) = 1. First, we prove that b appears in every of

the matrices N1
j,S used to construct N1.

By construction, for every 1 ≤ j ≤ r and every S ∈ S1
vj , N

1
j,S contains all the

tuples of

R ∩ (G0
v1 × · · · ×G0

vj−1
× (G0

vj ∩ S)×G0
vj+1

× · · · ×G0
vr ) = R ∩ (Aj−1 × S ×Ar−j)

By consistency of marginals pC(A
j−1 × S × Ar−j) = pvj (S) ≥ 1 −M1

θ . Then, by

the union bound pC(R ∩ (Aj−1 × S × Ar−j)) ≥ 1 − ϵC −M1
θ which is not smaller

than 1− 2M1
θ ≥ 1− 2H−1 > 1− 1/|A|L by (4). Since L ≥ r it follows that b must

necessarily belong to R ∩ (Aj−1 × S ×Ar−j) and hence to N1
j,S .

Now, if N1
11, . . . , N

1
1m, . . . , N

1
n1, . . . N

1
nm are the rows in N1 then let (a1, . . . , ar)

be the tuple b ⊔ ((N1
11 ⊔ · · · ⊔N1

1m) ⊓ · · · ⊓ (N1
n1 ⊔ · · · ⊔N1

nm)) where ⊔ and ⊓ are
applied component-wise.

We want to show that (a1, . . . , ar) ∈ R. Observe that for every pair of tuples
t, t′ ∈ R we have that t ⊔ t′ belongs to R as t ⊔ t′ = t ⊔ (t′ ⊓ t′) and the latter
must be in R. Alternatively we can say that the binary operation x ⊔ y preserves
R because it can be obtained from x ⊔ (y ⊓ z) by composition.

Proceeding in this way we shall prove that the (nm+1)-ary operation x0⊔((x11⊔
· · ·⊔x1m)⊓· · ·⊓(xn1⊔· · ·⊔xnm)) preserves R implying that (a1, . . . , ar) ∈ R. First,
we observe that the m-ary operation x1⊔· · ·⊔xm preserves R as it can be obtained
from composition from x⊔y by x1⊔(x2⊔(x3⊔· · ·⊔(xm−1⊔xn) · · · )). In a bit more
complicated fashion we can show that x0 ⊔ (x1 ⊓ · · · ⊓ xn) preserves R. If n = 3 it
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follows from the properties of distributive lattices that x0 ⊔ ((x0 ⊔ (x1 ⊓ x2)) ⊓ x3)
is equal to x0⊔ (x1⊓x2⊓x3). The pattern generalizes easily to arbitrary values for
n. Finally, one obtains x0 ⊔ ((x11 ⊔ · · · ⊔ x1m) ⊓ · · · ⊓ (xn1 ⊔ · · · ⊔ xnm) by suitably
composing x0 ⊔ (x1 ⊓ · · · ⊓ xn) and x1 ⊔ · · · ⊔ xm. This finishes the proof that
(a1, . . . , ar) ∈ R.

Finally, we have:

bj ⊔ ((N1
11,j ⊔ · · · ⊔N1

1m,j) ⊓ · · · ⊓ (N1
11,j ⊔ · · · ⊔N1

nm,j)) =

((N1
11,j ⊔ · · · ⊔N1

1m,j) ⊓ · · · ⊓ (N1
11,j ⊔ · · · ⊔N1

nm,j)) =

⊓S∈T 1
vj

⊔ S =

⊓S∈S1
vj

⊔ S =

t(vj)

which implies that (t(v1), . . . , t(vr) = (a1, . . . , ar) and, hence, that t satisfies C.
The first equality follows from property (i) and the fact that b appears in all the

matrices used to construct N1. The third equality follows from property (2) and
the fact that min(T 1

vj ) = min(S1
vj ).

6. The Boolean Classification

Theorem 18 is the only missing piece to complete the classification of the Boolean
case.

Theorem 19. Let Γ be a finite set of Boolean relations which is a core. The
following conditions hold:

(1) If Pol(Γ) contains the operation x ∨ (y ∧ z) or x ∧ (y ∨ z) then
• there is a polynomial-time algorithm that (1−ϵ, 1−O(ϵ))-approximates
CSP(Γ) for every ϵ ≥ 0.

(2) otherwise, if Pol(Γ) contains the majority operation (x∨y)∧(y∨z)∧(x∨z)
then

• there is a polynomial-time algorithm that (1−ϵ, 1−O(
√
ϵ))-approximates

CSP(Γ) for every ϵ ≥ 0, but
• there is no polynomial-time algorithm that (1−ϵ, 1−o(

√
ϵ))-approximates

CSP(Γ) for all ϵ ≥ 0 unless the UG conjecture is false.
(3) otherwise, if Pol(Γ) contains x ∨ y or x ∧ y then

• there is a polynomial-time algorithm that (1 − ϵ, 1 − O(1/ log(1/ϵ)))-
approximates CSP(Γ) for every ϵ ≥ 0 but

• there is no polynomial-time algorithm that (1 − ϵ, 1 − o(1/ log(1/ϵ)))-
approximates CSP(Γ) for all ϵ ≥ 0 unless the UG conjecture is false.

(4) otherwise CSP(Γ) is not robustly tractable unless P = NP.

Proof. The family of all sets of the form Pol(Γ) where Γ is a set of boolean
relations was completely described by Post (see [48] for example). The following
result follows directly from Post’s description.

Lemma 10. If {x ∨ (y ∧ z), x ∧ (y ∨ z)} ∩ Pol(Γ) = ∅ then Pol(Γ) is included in
Pol({≠2}), Pol(3 -HORN), Pol(3 -DualHORN), or Pol(3EQ-LIN(Z2)) where Z2 is
the 2-element cyclic group.

Let us consider each of the items of the thorem separately.
(1) Follows from Theorems 18 and 15.
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(2) The existence of the approximation algorithm follows from the well-known
fact that every relation preserved by (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z) can be written as a
conjunction of clauses in 2 -SAT, Theorem 3, and Lemma 1. The hardness follows
from Lemma 10, Lemma 1, and Theorems 8 and 4.

(3) If (x∧ y) ∈ Pol(Γ) then the existence of the approximation algorithm follows
from the well-knwon fact that every relation preserved by x∧y is pp-definable from
3 -HORN, Theorem 3, and Lemma 1. The case x∨y follows similarly replacing horn
by dual horn. For the hardness, since (x∨ y)∧ (y ∨ z)∧ (x∨ z) preserves CSP( ̸=2)
and (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z) ̸∈ Pol(Γ) it follows from Lemma 10 that Pol(Γ)
is included in Pol(3 -HORN), Pol(3 -DualHORN), or Pol(3EQ-LIN(Z2)). Now, we
only need to apply Lemma 1, and Theorems 8 and 4.

(4) Since x∧ y preserves 3 -HORN, x∨ y preserves 3 -DualHORN, (x∨ y)∧ (y ∨
z) ∧ (x ∨ z) preserves ̸=, and none of these three operations is in Pol(Γ) we can
infer by Lemma 10 that Pol(Γ) ⊆ Pol(3EQ-LIN(Z2)). Hardness follows again from
Lemma 1, and Theorems 8 and 4.

7. Conclusion

We have adapted the universal-algebraic framework to study robustly satisfiable
problems CSP(Γ) with a given error function, and we used it to derive some hardness
conditions. We described three classes of CSPs that can be robustly solved with
exponential, polynomial, and linear loss. We would like to mention some open
problems arising from our research.

Problem 1. Which problems CSP(Γ) can be robustly solved with polynomial or
linear loss?

Problem 2. Consider the set of numbers k ≥ 1 such that there is a problem
CSP(Γ) that can be (1− ϵ, 1− O(ϵ1/k))-approximated, but not (1− ϵ, 1− o(ϵ1/k))-
approximated, modulo some complexity-theoretic assumptions. Is this set infinite?
Does it contain all positive integers?
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