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Abstract We completely classify the computational complexity of the list H-
colouring problem for graphs (with possible loops) in combinatorial and algebraic
terms: for every graph H, the problem is either NP-complete, NL-complete, L-
complete or is first-order definable; descriptive complexity equivalents are given as
well via Datalog and its fragments. Our algebraic characterisations match important
conjectures in the study of constraint satisfaction problems.
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1 Introduction

Homomorphisms of graphs, i.e. edge-preserving mappings, generalise graph colour-
ings, and can model a wide variety of combinatorial problems dealing with mappings
and assignments [21]. Because of the richness of the homomorphism framework,
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many computational aspects of graph homomorphisms have recently become the fo-
cus of much attention. In the list H-colouring problem (for a fixed graph H), one is
given a graph G and a list Lv of vertices of H for each vertex v in G, and the goal is to
determine whether there is a homomorphism, i.e. an edge-preserving map, h from G
to H such that h(v) ∈ Lv for all v. The complexity of such problems has been studied
by combinatorial methods, e.g., in [18, 19]. In this paper, we study the complexity
of the list homomorphism problem for graphs in the wider context of classifying the
complexity of constraint satisfaction problems (CSP), see [4, 17, 21]. It is well known
that the CSP can be viewed as the problem of deciding whether there exists a homo-
morphism from a relational structure to another, thus naturally extending the graph
homomorphism problem.

One line of CSP research studies the non-uniform CSP, in which the target (or
template) structure T is fixed and the question is whether there exists a homomor-
phism from an input structure to T. Over the last years, much work has been done on
classifying the complexity of this problem, denoted Hom(T) or CSP(T), with respect
to the fixed target structure, see surveys [7, 9, 12, 21]. Classification here is under-
stood with respect to both computational complexity (i.e. membership in a given
complexity class such as P, NL, or L, modulo standard assumptions) and descriptive
complexity (i.e. definability of the class of all positive, or all negative, instances in a
given logic).

The best-known classification results in this direction concern the distinction be-
tween polynomial-time solvable and NP-complete CSPs. For example, a classical
result of Hell and Nešetřil (see [21]) shows that, for a graph H, Hom(H) (aka H-
colouring) is tractable if H is bipartite or admits a loop, and is NP-complete oth-
erwise, while Schaefer’s dichotomy [31] proves that any Boolean CSP is either in
P or NP-complete. Recent work [1] established a more precise classification in the
Boolean case: if T is a structure on {0,1} then CSP(T) is either NP-complete, P-
complete, NL-complete, ⊕L-complete, L-complete or in AC0 (see [2] or [30] for the
definitions of complexity classes).

Much of the work concerning the descriptive complexity of CSPs is centred around
the database-inspired logic programming language Datalog and its fragments (see [9,
13, 16, 17, 23]). Feder and Vardi initially showed [17] that a number of important
tractable cases of CSP(T) correspond to structures for which ¬CSP(T) (the comple-
ment of CSP(T)) is definable in Datalog. Similar ties were uncovered more recently
between the two fragments of Datalog known as linear and symmetric Datalog and
structures T for which CSP(T) belongs to NL and L, respectively [13, 16]. Note that,
for CSPs, definability in many interesting extensions of first-order logic or restric-
tions of second-order logic is known to be equivalent to definability in Datalog or
one of its fragments (see the above papers).

Algebra, logic and combinatorics provide three angles of attack which have fu-
elled progress in this classification effort [7, 9, 12, 21, 23]. The algebraic approach
(see [7, 12]) links the complexity of CSP(T) to the set of functions that preserve
the relations in T. In this framework, one associates to each T an algebra AT and
exploits the fact that the properties of AT completely determine the complexity of
CSP(T). This angle of attack was crucial in establishing key results in the field (see,
for example, [3, 6, 7]).
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Tame Congruence Theory, a deep universal-algebraic framework first developed
by Hobby and McKenzie in the mid 80’s [22], classifies the local behaviour of fi-
nite algebras into five types (unary, affine, Boolean, lattice and semilattice). It was
recently shown (see [7, 9, 24]) that there is a strong connection between the compu-
tational and descriptive complexity of CSP(T) and the set of types that appear in AT
and its subalgebras. There are strong conditions involving types which are sufficient
for NL-hardness, P-hardness and NP-hardness of CSP(T) as well as for inexpressibil-
ity of ¬CSP(T) in Datalog, linear Datalog and symmetric Datalog. These sufficient
conditions are also suspected (and in some cases proved) to be necessary, under natu-
ral complexity-theoretic assumptions. For example, (a) the presence of unary type is
known to imply NP-completeness, while its absence is conjectured to imply tractabil-
ity (see [7]); (b) the absence of the unary and affine types was recently proved to
be (unconditionally) equivalent to definability in Datalog [3]; (c) the absence of the
unary, affine, and semilattice types is proved necessary, and suspected to be sufficient,
for membership in NL and definability in linear Datalog [24]; (d) the absence of all
types but Boolean is proved necessary, and suspected to be sufficient, for member-
ship in L and definability in symmetric Datalog [24]. The strength of evidence varies
from case to case and, in particular, the conjectured algebraic conditions concerning
CSPs in NL and L (and, as mentioned above, linear and symmetric Datalog) still rest
on relatively limited evidence [9–11, 13–15, 24].

The aim of the present paper is to show that these algebraic conditions are indeed
sufficient and necessary in the special case of list H-colouring for undirected graphs
with possible loops, and to characterise, in this special case, the dividing lines in
graph-theoretic terms. Note that our results provide the first complete classification
of CSPs with a fixed template for a reasonably large class of structures outside the
Boolean case (the above-mentioned [1]). One can view the list H-colouring prob-
lem as a CSP where the template is the structure HL consisting of the binary (edge)
relation of H and all unary relations on H (i.e. every subset of H ). Tractable list ho-
momorphism problems for general structures were characterised in [6] in algebraic
terms. The tractable cases for graphs were described in [19] in both combinatorial
and (more specific) algebraic terms; the latter implies, when combined with a recent
result [14], that in these cases ¬CSP(HL) is definable in linear Datalog and therefore
CSP(HL) is in fact in NL. We complete the picture by refining this classification and
showing that CSP(HL) is either NP-complete, or NL-complete, or L-complete or in
AC0 (and in fact first-order definable). We also remark that the problem of recognising
into which case the problem CSP(HL) falls can be solved in polynomial time.

As we mentioned above, the distinction between NP-complete cases and those in
NL follows from earlier work [14, 19], and the situation is similar with distinction
between L-hard cases and those leading to membership in AC0 [24, 26]. Therefore,
the main body of technical work in the paper concerns the distinction between NL-
hardness and membership in L. We give two equivalent characterisations of the class
of graphs H such that CSP(HL) is in L. One characterisation is via forbidden sub-
graphs (for example, the reflexive graphs in this class are exactly the (P4,C4)-free
graphs, while the irreflexive ones are exactly the bipartite (P6,C6)-free graphs), while
the other is via an inductive definition. The first characterisation is used to show that
graphs outside of this class give rise to NL-hard problems; we do this by providing
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constructions witnessing the presence of a non-Boolean type in the algebras associ-
ated with the graphs. The second characterisation is used to prove positive results.
We first provide operations in the associated algebra which satisfy certain identities;
this allows us to show that the necessary condition on types is also sufficient in our
case. We also use the inductive definition to demonstrate that the class of negative
instances of the corresponding CSP is definable in symmetric Datalog, which implies
membership of the CSP in L.

2 Preliminaries

2.1 Graphs and Relational Structures

A signature is a (finite) set of relation symbols, each symbol has an associated arity.
A structure T of signature τ consists of a set T , called the universe of T, and a relation
R(T), on T , of the corresponding arity for each relation symbol R ∈ τ . All structures
in this paper are assumed to be finite, i.e. with finite universe. In the following we
denote the underlying universe of a structure S, T, etc. by its roman equivalent S,
T , etc. Let S be a structure of the same signature as T. A homomorphism from S
to T is a map f from S to T such that f (R(S)) ⊆ R(T) for each R ∈ τ , i.e. we
have (f (a1), . . . , f (ar)) ∈ R(T) whenever (a1, . . . ar ) ∈ R(S). In this case we write
f : S → T. A structure T is called a core if every homomorphism from T to itself is
a permutation on T . We denote by CSP(T) the class of all τ -structures S that admit
a homomorphism to T, and by ¬CSP(T) the complement of this class.

The direct n-th power of a τ -structure T, denoted Tn, is defined to have uni-
verse T n and, for any (say m-ary) R ∈ τ , (a1, . . . ,am) ∈ R(Tn) if and only if
(a1[i], . . . ,am[i]) ∈ R(T) for each 1 ≤ i ≤ n. For a subset I ⊆ T , the substructure
induced by I on T is the structure I with universe I and such that R(I) = R(T) ∩ Im

for every m-ary R ∈ τ .
For the purposes of this paper, a graph is a relational structure H = 〈H ; θ〉 where θ

is a symmetric binary relation on H . The graph H is reflexive (irreflexive) if (x, x) ∈ θ

((x, x) 
∈ θ ) for all x ∈ H . Given a graph H, let S1, . . . , Sk denote all subsets of H ; let
HL be the relational structure obtained from H by adding all the Si as unary relations;
more precisely, let τ be the signature that consists of one binary relational symbol θ

and unary symbols Ri , i = 1, . . . , k. The τ -structure HL has universe H , θ(HL) is
the edge relation of H, and Ri(HL) = Si for all i = 1, . . . , k. It is easy to see that
HL is a core; in fact its only self-map which is a homomorphism is the identity. We
call CSP(HL) the list homomorphism problem for H. Note that if G is an instance
of this problem then θ(G) can be considered as a digraph, but the directions of the
arcs are unimportant because H is undirected. Also, if an element v ∈ G is in Ri(G)

then this is equivalent to v having Si as its list, so G can be thought of as a digraph
with H-lists. Note that an element of G can in principle have several H-lists, which
is equivalent to having their intersection as a single list.

In [19], a dichotomy result was proved, identifying bi-arc graphs as those whose
list homomorphism problem is tractable, and others as giving rise to NP-complete
problems. Bi-arc graphs are defined as follows. Fix a circle with two distinct specified
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points p and q . A bi-arc is a pair of arcs (N,S) on the circle such that N contains p

but not q and S contains q but not p. A graph H is a bi-arc graph if there is a family
of bi-arcs {(Nx,Sx) : x ∈ H } such that, for every x, y ∈ H , the following conditions
hold: (i) if x and y are adjacent, then neither Nx intersects Sy nor Ny intersects Sx ,
and (ii) if x is not adjacent to y then both Nx intersects Sy and Ny intersects Sx .
Equivalently, H is a bi-arc graph if and only if the complement of the graph H × K2
is a circular arc graph (i.e., can be represented by arcs on a circle so that two vertices
are adjacent if and only if the corresponding arcs intersect) [19].

2.2 Algebra

An n-ary operation on a set A is a map f : An → A, a projection is an operation of
the form ei

n(x1, . . . , xn) = xi for some 1 ≤ i ≤ n. Given an h-ary relation θ and an
n-ary operation f on the same set A, we say that f preserves θ or that θ is invariant
under f if the following holds: given any matrix M of size h × n whose columns
are in θ , applying f to the rows of M will produce an h-tuple in θ . A polymorphism
of a structure T is an operation f that preserves each relation in T; in this case we
also say that T admits f . In other words, an n-ary polymorphism of T is simply a
homomorphism from Tn to T. For the special case of graphs, this means that if there
is an edge between ai and bi for each 1 ≤ i ≤ n (where the ai ’s and bi ’s are not
necessarily distinct) then there is an edge between f (a1, . . . , an) and f (b1, . . . , bn).

An algebra is a pair A = 〈A;F 〉 where A is a set, and F is a family of finitary
operations on A. With any structure T, one associates an algebra AT whose universe
is T and whose operations are all polymorphisms of T. Given a graph H, we let,
for the ease of notation, H denote the algebra associated with HL. An operation on
a set is called conservative if it preserves all subsets of the set (as unary relations).
So, the operations of H are the conservative polymorphisms of H. Polymorphisms
can provide a convenient language when defining classes of graphs. For example, it
was shown in [5] that a graph is a bi-arc graph if and only if it admits a conservative
majority operation where a majority operation is a ternary operation m satisfying the
identities m(x,x, y) = m(x,y, x) = m(y,x, x) = x (for all x, y).

In order to state some of our results, we need the following basic notions from
universal algebra (see textbooks [22, 29] for more universal-algebraic background
and [8, 12] for the basics of the connection between universal algebra and CSP). Let
I be a signature, i.e. a set of operation symbols f each of a fixed arity; we use the
term “signature” for both structures and algebras, this will cause no confusion. An
algebra of signature I is a pair A = 〈A;F 〉 where A is a non-empty set, the universe
of A, and F = {f A : f ∈ I } is the set of basic operations (for each f ∈ I , f A is an op-
eration on A of the corresponding arity). The term operations of A are the operations
built from the operations in F and projections by using composition. The polynomial
operations of A are the operations built from the operations in F , the constant oper-
ations and projections by using composition. An algebra all of whose (basic or term)
operations are conservative is called a conservative algebra. A subalgebra B of an
algebra A consists of a subset B of A that is invariant under all operations of A and
the restrictions of the operations of A to B . A homomorphic image of an algebra A is
an algebra C which is similar to A (i.e. with the same signature) and such that there is
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a surjective mapping ψ : A → C with ψ(f A(a1, . . . , ar )) = f C(ψ(a1), . . . ,ψ(ar))

for all operations f ∈ I and all tuples of elements of A. Direct products and pow-
ers of algebras are defined in a natural way, by taking direct product of universes
and defining the operations to act component-wise. A class of similar algebras which
is closed under formation of homomorphic images, subalgebras and direct products
is called a variety. The variety generated by an algebra A, denoted by V (A), is the
smallest variety containing A, it coincides with the class of all homomorphic images
of subalgebras of direct powers of A.

Tame Congruence Theory, as developed in [22], is a powerful tool for the analysis
of finite algebras. Every finite algebra has a typeset, which describes (in a certain
specified sense) the local behaviour of the algebra. It contains one or more of the
following 5 types: (1) the unary type, (2) the affine type, (3) the Boolean type, (4) the
lattice type and (5) the semilattice type. The numbering of the types is fixed, and they
are often referred to by their numbers. The typeset of a variety V , denoted typ(V ), is
simply the union of typesets of all finite algebras in it. We note that there is a very tight
connection between the kind of identities that are satisfied by the algebras in a variety
and the types that are admitted or omitted by a variety, i.e. those types that do or do
not appear in the typesets of algebras in the variety [22]. We will be mostly interested
in type-omitting conditions for varieties of the form V (AT), and Corollary 3.2 of [32]
says that in this case it is enough to consider the typesets of AT and its subalgebras.
On the intuitive level, if T is a core structure then the typeset typ(V (AT)) contains
crucial information about the kind of relations that T can or cannot simulate, thus
implying lower/upper bounds on the complexity of CSP(T).

The definitions of the types are rather technical in general, but they are simple
enough for conservative algebras, and all algebras in this paper are conservative. Let
A = 〈A,F 〉 be a conservative algebra and let X = {a, b} be a two-element subset
of A. By conservativity, every operation in F preserves X, so X is the universe of
a subalgebra X of A. Identify a with 0 and b with 1, and think of operations on X

as Boolean operations. Then X satisfies exactly one of the following five conditions
(see [22]):

• The type of X (in A) is unary, or 1, if f |X is a projection for each f ∈ F .
• The type of X is affine, or 2, if it is not unary and f |X is a linear operation for each

f ∈ F . Equivalently, the type of X is affine if the polynomial operations of X are
all linear Boolean operations.

• The type of X is semilattice, or 5, if it is not unary and either each operation f |X ,
f ∈ F , is the minimum of some of its arguments or each operation f |X , f ∈ F , is
the maximum of some of its arguments.

• The type of X is lattice, or 4, if it is not semilattice, but all operations f |X , f ∈ F ,
are monotone. Equivalently, the polynomial operations of X are all monotone
Boolean operations.

• The type of X is Boolean, or 3, in all other cases, that is, if the family {f |X | f ∈ F }
contains a non-linear operation and a non-monotone operation. Equivalently, the
polynomial operations of X are all possible Boolean operations.

The typeset of a conservative algebra A is simply the union of types of two-element
subsets of A. Consider the following ordering of the types: 1 < 2 < 3 > 4 > 5 > 1. It
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can be easily derived from Corollary 3.2 of [32] that, for any type i, the variety V (A)

omits all types below i (with respect to the above ordering) if and only if none of
the two-element subsets of A has type below i. Thus, for a structure of the form HL,
the knowledge of how conservative polymorphisms of H behave on two-elements
subsets of H gives us all necessary information about the typeset of V (H).

In this paper, we use ternary operations f1, . . . , fn satisfying the following identi-
ties:

x = f1(x, y, y) (Id1)

fi(x, x, y) = fi+1(x, y, y) for all i = 1, . . . n − 1 (Id2)

fn(x, x, y) = y. (Id3)

The following lemma from [22] contains some type-omitting results that we use
in this paper.

Lemma 1

1. A finite algebra A has term operations f1, . . . , fn, for some n ≥ 1, satisfying iden-
tities (Id1)–(Id3) if and only if the variety V (A) omits the unary, lattice, and semi-
lattice types.

2. If a finite algebra A has a majority term operation then V (A) omits the unary,
affine, and semilattice types.

We remark in passing that operations satisfying identities (Id1)–(Id3) are also
known to characterise a certain algebraic (congruence) condition called (n + 1)-
permutability [22].

2.3 Datalog

Datalog is a query and rule language for deductive databases (see [23]). A Datalog
program D over a (relational) signature τ is a finite set of rules of the form h ←
b1 ∧ . . . ∧ bm where h and each bi are atomic formulas Rj(v1, . . . , vk). We say that
h is the head of the rule and that b1 ∧ . . . ∧ bm is its body. Relational predicates Rj

which appear in the head of some rule of D are called intensional database predicates
(IDBs) and are not part of the signature τ . All other relational predicates are called
extensional database predicates (EDBs) and are in τ . So, a Datalog program is a
recursive specification of IDBs (from EDBs).

A rule of D is linear if its body contains at most one IDB and is non-recursive
if its body contains only EDBs. A linear but recursive rule is of the form I1(x̄) ←
I2(ȳ) ∧ E1(z̄1) ∧ . . . ∧ Ek(z̄k) where I1, I2 are IDBs and the Ei are EDBs (note that
the variables occurring in x̄, ȳ, z̄i are not necessarily distinct). For each such linear
recursive rule the symmetric of that rule is defined as I2(ȳ) ← I1(x̄)∧E1(z̄1)∧ . . .∧
Ek(z̄k). A Datalog program is non-recursive if all its rules are non-recursive, linear
if all its rules are linear and symmetric if it is linear and if the symmetric of each
recursive rule of D is also a rule of D .

A Datalog program D takes a τ -structure A as input and returns a structure D(A)

over the signature τ ′ = τ ∪ {I : I is an IDB in D}. The relations corresponding to τ
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are the same as in A, while the new relations are recursively computed by D , with
semantics naturally obtained via least fixed-point of monotone operators. We also
want to view a Datalog program as being able to accept or reject an input τ -structure
and this is achieved by choosing one of the IDBs of D as the goal predicate: the
τ -structure A is accepted by D if the goal predicate is non-empty (or true if it is
0-ary) in D(A). Thus every Datalog program with a goal predicate defines a class of
structures—those that are accepted by the program.

We illustrate the semantics of Datalog through an example, a more formal treat-
ment can be found, e.g., in [13, 23], and other examples can be found in e.g. [9, 16].
It is well known and easy to see that the problem CSP(K2), where K2 is the undi-
rected edge, is the graph 2-colouring problem. As is well known, an undirected graph
is not 2-colourable if and only if it contains a cycle of odd length. The following
program D defines (essentially) the class ¬CSP(K2) because the goal predicate be-
comes non-empty (i.e. true) if and only if the input graph contains an odd cycle.

O(x,y) ← E(x,y)

O(x, y) ← O(x,w) ∧ E(w,z) ∧ E(z, y)

O(x,w) ← O(x,y) ∧ E(w,z) ∧ E(z, y)

G ← O(x,x)

Here E is the binary EDB representing the adjacency relation in the input graph, O

is a binary IDB whose intended meaning is “there exists an odd-length path from x

to y” and G is the 0-ary goal predicate. Intuitively, the program first finds a path of
length one using the only non-recursive rule and then iteratively finds paths of higher
odd lengths using the middle two rules. Whenever the path begins and ends at the
same vertex x, the goal predicate becomes non-empty indicating the presence of a
cycle of odd length. Note that the above program works for graphs and, formally,
inputs of CSP(K2) are digraphs, but the above program can be easily modified to
work for all digraphs.

Note that the two middle rules form a symmetric pair. In the above description, we
have not included the symmetric of the last rule. In fact, the fairly counterintuitive rule
O(x,x) ← G can be added to the program without changing the class of structures
accepted by the program since the rule only becomes relevant if an odd cycle has
already been detected in the graph.

As illustrated above, when using Datalog to study CSP(T), one usually speaks of
the definability of ¬CSP(T) in Datalog (i.e. by a Datalog program) or its fragments.
This is because any class definable in Datalog must be closed under extension. As
we mentioned before, any problem CSP(T) is tractable if its complement is defin-
able in Datalog, and all such structures were recently identified in [3]. Definability of
¬CSP(T) in linear (symmetric) Datalog implies that CSP(T) belongs to NL and L,
respectively [13, 16]. As we discussed in Sect. 1, there is a connection between de-
finability of CSPs in Datalog (and its fragments) and the presence/absence of types
in the corresponding algebra (or variety).

Note that it follows from Lemma 1 and from the results in [24, 25] that if, for a
core structure T, ¬CSP(T) is definable in symmetric Datalog then T must admit,
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for some n, operations satisfying identities (Id1)–(Id3). The converse for n = 1 was
proved in [15]. Moreover, with the result of [3], a conjecture from [24] can be restated
as follows: for a core structure T such that ¬CSP(T) is definable in Datalog, T admits
operations satisfying (Id1)–(Id3) for some n if and only if ¬CSP(T) is definable in
symmetric Datalog.

3 Main Results and Proof Outline

In this section we state our main results, Theorems 2, 4, and 5. Theorem 2 follows
from known results (with a little help from Lemma 16), the proof of Theorem 5 is
a relatively simple application of a result from [26], and the proof of Theorem 4
constitutes most of this paper.

Theorem 2 Let H be a graph.

• If V (H) admits the unary type, then ¬CSP(HL) is not expressible in Datalog and
CSP(HL) is NP-complete (under first-order reductions);

• if V (H) omits the unary but admits the lattice type, then ¬CSP(HL) is not ex-
pressible in symmetric Datalog but is expressible in linear Datalog, and CSP(HL)

is NL-complete (under first-order reductions).

Proof The first statement is shown in [24]. If V (H) omits the unary type, then HL ad-
mits a majority operation by Lemma 16 in Sect. 5 and then ¬CSP(HL) is expressible
in linear Datalog by [14]; in particular the problem is in NL. If, furthermore, the vari-
ety admits the lattice type, then ¬CSP(HL) is not expressible in symmetric Datalog
and is NL-hard by results in [24]. �

By Lemma 1, the presence of a majority operation in H implies that typ(V (H)) can
contain only the Boolean and lattice types. The lattice type is dealt with in Theorem 2,
so it remains to investigate graphs H with V (H) admitting only the Boolean type. We
will now define the class of graphs that plays a central role in our paper.

Definition 3 The class F consists of all graphs H that contain none of the following
12 graphs as an induced subgraph:

1. the reflexive path of length 3 and the reflexive 4-cycle;
2. the irreflexive cycles of length 3, 5 and 6, and the irreflexive path of length 5;
3. B1, B2, B3, B4, B5 and B6 (see Fig. 1).

Notice that when only reflexive or only irreflexive graphs are of interest, then the
only relevant forbidden subgraphs are those in Definition 3(1) or in Definition 3(2),
respectively. Observe that all irreflexive graphs in F are bipartite.

The next theorem is the main contribution of this paper.

Theorem 4 Let H be a graph. Then the following conditions are equivalent:

1. H admits conservative operations satisfying (Id1)–(Id3) for n = 3;
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Fig. 1 The forbidden graphs

2. H admits conservative operations satisfying (Id1)–(Id3) for some n ≥ 1;
3. V (H) admits only the Boolean type;
4. H ∈ F ;
5. ¬CSP(HL) is definable in symmetric Datalog.

If the above holds then CSP(HL) is in the complexity class L.

Proof (1) trivially implies (2). If (2) holds then by Lemma 1 V (H) omits the unary,
lattice, and semilattice types. By Lemma 16 in Sect. 5, H admits a majority oper-
ation, so Lemma 1 implies that V (H) also omits the affine type; hence (3) holds.
Implication (3)⇒(4) is the content of Lemma 17 in Section 5, and (5) implies (3) by
a result of [24]. We give an inductive characterisation of the class F in Theorem 14
in Sect. 4, and then use it to show that (4) implies both (1) and (5), in Sect. 5.1 and
Sect. 6, respectively. Finally, definability in symmetric Datalog implies membership
in L by [16]. �

For completeness’ sake, we describe graphs whose list homomorphism problem is
definable in first-order logic (equivalently, is in AC0, see [9]). By results in [24], any
problem CSP(T) is either first-order definable or L-hard under FO reductions. Hence,
it follows from Theorem 4 that, for a graph H ∈ F , the list homomorphism problem
for H is either first-order definable or L-complete.

Theorem 5 Let H be a graph. Then CSP(HL) is first-order definable if and only if
H has the following form: H is the disjoint union of two sets R and I such that (i) R

is the set of loops of H and induces a complete graph, (ii) I is the set of non-loops
of H and induces a graph with no edges, and (iii) I = {x1, . . . , xm} can be ordered
so that the neighbourhood of xi is contained in the neighbourhood of xi+1 for all
1 ≤ i ≤ m − 1.

Remark 6 Given a graph H, it can be decided in polynomial time which of the dif-
ferent cases delineated in Theorems 2, 4, 5 the list homomorphism problem for H
satisfies. Indeed, it is known (see [19]) that H is a bi-arc graph if and only if the com-
plement of H×K2 is a circular arc graph which can be recognised in linear time [28].
Assume that H is a bi-arc graph: the definition of F (Definition 3) gives a polyno-
mial time (in fact, even AC0) algorithm to recognise them; and those graphs whose
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list homomorphism problem is first-order definable can be recognised in polynomial
time by results of [26].

The remaining sections are devoted to proving the lemmas used in the proof of the
above theorems. Section 4 deals with the graph-theoretic proofs, Sect. 5 presents the
proofs of the algebraic results, and Sect. 6 provides the symmetric Datalog express-
ibility proofs. Finally, Sect. 7 contains the proof of Theorem 5.

4 Combinatorial Graph Charaterisations

In this section, we give an inductive characterisation of the class F defined in the
previous section. This characterisation is stated in Theorem 14. Before proving The-
orem 14, we provide inductive characterisations for the reflexive and the irreflexive
subclasses of F in Lemmas 9 and 11, respectively. These lemmas will facilitate the
proof of Theorem 14.

Let Fre denote the reflexive graphs in F (i.e. reflexive graphs that do not contain
graphs in Definition 3(1) as induced subgraphs), and Fir the irreflexive graphs in
F (i.e. irreflexive graphs that do not contain graphs in Definition 3(2) as induced
subgraphs).

We need the following two operations on graphs:

Definition 7 Let H1 and H2 be bipartite irreflexive graphs, with colour classes B1,
T1 and B2 and T2 respectively, with T1 and B2 non-empty. We define the special sum
H1 � H2 (which depends on the choice of the Bi and Ti )1 as follows: it is the graph
obtained from the disjoint union of H1 and H2 by adding all possible edges between
the vertices in T1 and B2. We say that an irreflexive graph H is a special sum or
expressed as a special sum if there exist two bipartite graphs and a choice of colour
classes on each such that H is isomorphic to the special sum of these two graphs.

Definition 8 Given two vertex-disjoint graphs H1 and H2, the adjunction of H1 to
H2 is the graph H1 � H2 obtained by taking the disjoint union of the two graphs, and
adding every edge of the form (x, y) where x is a loop in H1 and y is a vertex of H2.

We begin with the simple case of reflexive graphs.

4.1 The Reflexive Graphs in F

Lemma 9 Fre is the smallest class of reflexive graphs Ire such that:

1. Ire contains the one-element graph;
2. Ire is closed under disjoint union;
3. if H1 is a single loop and H2 ∈ Ire then H1 � H2 ∈ Ire.

1Notice that one can often divide a bipartite graph into parts in several ways, and even choose B1 and/or
T2 to be empty.
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Proof It is easy to see that Ire ⊆ Fre. Suppose that Fre 
⊆ Ire, and let H be a graph
of smallest size such that H ∈ Fre and H 
∈ Ire, i.e. H cannot be obtained from the
one-element graph using the operations of disjoint union and adjunction of a loop. By
minimality, H is connected, contains no universal vertex (a vertex that is a neighbour
of every other vertex including itself), it contains more than one vertex, and every of
its proper induced connected subgraphs contains a universal vertex. Pick some edge
(x, y) in H; since there is no universal vertex there exists some t not adjacent to y.
Let G be the subgraph induced by H \ {x}.

Assume first that G is connected. Let u be a universal vertex of G; we have edges
(x, y), (y,u), (u, t). Since H has no universal vertex then x is not adjacent to u. Thus
{x, y, t, u} is either a reflexive path of length 3 or a reflexive 4-cycle, a contradiction.

Suppose now that G is not connected. Let C and D be distinct components of
G; since x is not universal in H there exists some z not adjacent to x, and without
loss of generality suppose that z ∈ C. Since H is connected there exists a path from
z to some element in D, in particular we can find edges (z′,w), (w,x), (x, v), where
z′,w ∈ C and w is a neighbour of x, z′ is not adjacent to x, and v ∈ D. It is easy to
verify that {z′,w,x, v} induces a reflexive path of length 3, a contradiction. �

Remark 10 Lemma 9 states that the reflexive graphs avoiding the path of length 3 and
the 4-cycle are precisely those constructed from the one-element loop using disjoint
union and adjunction of a universal vertex. These graphs can also be described by
the following property: every connected induced subgraph of size at most 4 has a
universal vertex. These graphs have been studied previously as those with so-called
NLCT width 1, which were proved to be exactly the trivially perfect graphs [20]. Our
result provides an alternative proof of the equivalence of these conditions.

4.2 The Irreflexive Graphs in F

The following result gives an inductive characterisation of the class of graphs Fir.

Lemma 11 Fir is the smallest class of irreflexive graphs Iir such that:

1. Iir contains the one-element graph;
2. Iir is closed under disjoint union;
3. Iir is closed under special sum.

Proof We show that Iir ⊆ Fir. The class Fir obviously contains the one-element
graph. In order to prove the inclusion, it is sufficient to show that if H1 and H2
are graphs that do not contain any cycles of length 3, 5 or 6, or a path of length 5 as
an induced subgraph, then neither the disjoint union of H1 and H2, nor the special
sum of H1 and H2 contain any cycles of length 3, 5 or 6, or a path of length 5 as an
induced subgraph. This is clearly the case for disjoint union, so now we concentrate
on the special sum of H1 and H2.

As it was observed after Definition 3, if an irreflexive graph does not contain cycles
of length 3, 5 or a path of length 5, then it must be bipartite. It follows that H1 � H2
must be bipartite, so H1 � H2 contains no induced cycles of length 3 or 5. Assume
then that C is an induced subgraph of H1 � H2, where C is a 6-cycle or a 5-path. We
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shall obtain a contradiction by showing that C must be contained either in H1 or H2.
By assumption and definition of special sum, it is clear that, since C is connected, it
must contain at least one vertex in T1 and at least one in B2; on the other hand, since
C contains no induced 4-cycle, C can have at most 2 vertices in T1 and at most 1
in B2, without loss of generality. Suppose first that there is exactly one vertex of C
in T1. Since every vertex of C has degree at most 2, it follows that no more than 1
vertex of C can be in B1, and similarly no more than 1 vertex of C can be in T2.
Therefore C cannot contain vertices both in T1 and B2, so C is either in H1 or H2,
a contradiction. On the other hand if C has 2 vertices in T1, then C has no vertex
in T2 and at most 2 in B1, so again, C cannot contain vertices both in T1 and B2, a
contradiction. Hence, we conclude that Iir ⊆ Fir.

For the reverse inclusion, Fir ⊆ Iir, suppose for a contradiction that there exists a
graph H ∈ Fir such that H 
∈ Iir. Choose H so that its set of vertices is of minimal
size. Obviously H is connected. We denote the usual graph distance between vertices
x and y by d(x, y), i.e. the length of a shortest path in the graph between x and y. Let
N(x) denote the set of neighbours of x in H, and let N2(x) = {t ∈ T1 : d(x, t) = 2}.

Claim 1. For every x ∈ H there exists y ∈ H such that d(x, y) = 3.

Proof Otherwise, since H is connected, we would have some x ∈ H with d(x, y) ≤ 2
for all y ∈ H . Now let B2 denote the set of all vertices adjacent to x, and let T2 =
H \ (B2 ∪ {x}). Furthermore let B1 = ∅ and T1 = {x}. Since H is bipartite, (B2, T2)

is a bipartition, and hence H is expressed as a special sum, a contradiction. �

Claim 2. There exists x ∈ H such that the subgraph induced by H \ {x} is con-
nected.

Proof Notice first that if for some x the subgraph G induced by H \ {x} is not con-
nected, then it contains at most one connected component with 2 or more vertices.
Indeed, by Claim 1 let y ∈ H such that d(x, y) = 3; let y,w, z, x be an induced
path of length 3 from y to x. Note that the connected component of y has size at
least 2. Now choose a different connected component C of G that contains at least
two vertices. Since H is connected, C clearly contains adjacent vertices u and v with
u adjacent to x. But then the vertices y,w, z, x,u, v induce a path of length 5 in H, a
contradiction.

Now choose any vertex x in H. If the subgraph induced by H \ {x} is connected
we are done; otherwise, one of its components must be trivial, i.e. H has a vertex x′
dangling from x. Then the subgraph induced by H \ {x′} is connected. �

So we may now suppose that H has the following structure: there is some vertex x

such that the subgraph G induced by H \ {x} is connected; by induction hypothesis,
G is a special sum, with subsets Bi , Ti , (i = 1,2) where T1 and B2 are non-empty.
We suppose without loss of generality that x is adjacent to some vertex in B1 ∪ B2
(see Fig. 2).

Case 1: T2 is non-empty.
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Fig. 2 The graph H

Claim 3. There exists an edge (u, v) with u ∈ B2 and v ∈ T2 such that u is not
adjacent to x.

Proof Suppose for a contradiction that this is not the case: then B2 = B0
2 ∪ B1

2 where
B0

2 consists of all elements of B2 not adjacent to any vertex in T2, and since T2 is non-
empty, the set B1

2 is non-empty, and contains by hypothesis only vertices adjacent
to x. Then define a decomposition of H as follows: let B ′

1 = B1 ∪ B0
2 , T ′

1 = T1 ∪ {x},
B ′

2 = B1
2 and T ′

2 = T2. But then H is a special sum, a contradiction. �

Claim 4. The subgraph induced by N(x) ∪ N2(x) is complete bipartite.

Proof Otherwise, we may find elements t ∈ N2(x) and z ∈ N(x) which are not ad-
jacent. Let y be a vertex on a path of length 2 between x and t . Let u and v be the
elements whose existence is guaranteed by the last claim: then it is easy to see that
the sequence z, x, y, t, u, v is an induced path of length 5 in H, a contradiction. �

Consider the following decomposition of H : let B ′
1 = B1 \ (N(x) ∩ B1), T ′

1 =
N2(x), B ′

2 = (N(x) ∩ B1) ∪ B2 and T ′
2 = (T1 \ N2(x)) ∪ {x} ∪ T2. By Claim 4 this

is a decomposition of H as a special sum, unless there exists some edge (y, z) with
y ∈ B ′

1 and z ∈ T ′
2, i.e. with y ∈ B1 \ N(x) and z ∈ T1 \ N2(x). Suppose this occurs.

Then we have the following:

Claim 5. (y, t) is an edge for every t ∈ N2(x).

Proof If this is not the case, then choose some t ∈ N2(x) not adjacent to y; let n ∈
N(x) be adjacent to t . By Claim 3 we can find u ∈ B2 not adjacent to x. Then the
sequence y, z,u, t, n, x is an induced path of length 5 in H, a contradiction. �

It follows from Claim 5 that we can modify our last decomposition as follows:
simply remove from B ′

1 all the offending vertices such as y. More precisely, let Y be
the set of all y ∈ B ′

1 that have some neighbour z ∈ T1 \ N2(x), and let B ′′
1 = B ′

1 \ Y ,
T ′′

1 = T ′
1, B ′′

2 = Y ∪ B ′
2 and T ′′

2 = T ′
2. By Claim 5, this shows that H is a special sum,

a contradiction.

Case 2: T2 is empty.

Notice that in this case we may assume that N(x) ⊆ B1, by simply decomposing
H \ {x} if necessary as B ′

1 = B1 ∪ N(x), B ′
2 = B2 \ N(x), and T ′

i = Ti for i = 1,2
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Fig. 3 The graph H with T2
empty

(see Fig. 3). (Of course, if H is not a special sum then there is at least one vertex in
B2 \ N(x) for otherwise we could set T ′

1 = T1 ∪ {x}.)
Claim 6. For every y, z ∈ N(x) we have N(y) ⊆ N(z) or N(z) ⊆ N(y). Similarly,

for every u,v ∈ T1, either N(u) ∩ N(x) ⊆ N(v) ∩ N(x) or N(v) ∩ N(x) ⊆ N(u) ∩
N(x).

Proof Suppose this is not the case: then we may find y, z ∈ N(x) and u ∈ N(y) and
v ∈ N(z) such that u is not adjacent to z and v is not adjacent to y. Let b ∈ B2. Then
clearly the subgraph of H induced by {x, y, z,u, v, b} is a 6-cycle, a contradiction.
The argument for the second statement is identical. �

By Claim 6, there exists an ordering of N(x) = {b0, . . . , bm} such that N(bi) ⊆
N(bj ) if i ≤ j , and an ordering of T1 = {t0, . . . , tM} such that N(ti)∩N(x) ⊆ N(tj )∩
N(x) if i ≤ j . Since H is connected, it is easy to see that bm must be adjacent to tM ;
and by Claim 1, bm cannot be adjacent to t0.

Claim 7. For every t ∈ T1, either N(t) ∩ N(x) = N(x) or N(t) ∩ N(x) = ∅.

Proof Suppose this is not the case. Then there exists some t ∈ T1 such that t is ad-
jacent to bm but not to b0. Then for any b ∈ B2 the sequence b0, x, bm, t, b, t0 is an
induced path of length 5, a contradiction. �

Let F denote the set of vertices t ∈ T1 such that N(t) ∩ N(x) = N(x) and let E

denote the set of vertices t ∈ T1 such that N(t) ∩ N(x) = ∅.

Claim 8. For every y ∈ B1 \ N(x), if y is adjacent to some vertex in E then it is
adjacent to every vertex in F .

Proof Otherwise we can find t ∈ E and t ′ ∈ F and y ∈ B1 \ N(x) such that (y, t)

is an edge but (y, t ′) is not. Then for any b ∈ B2 the sequence x, bm, t ′, b, t, y is an
induced path of length 5, a contradiction. �

Let Y denote the set of vertices in B1 \ N(x) that are adjacent to some vertex
in E. By the last claim, the subgraph induced by (Y ∪ B2 ∪ N(x)) ∪ F is complete
bipartite (see Fig. 4). Consider the following decomposition: let B ′

2 = Y ∪N(x)∪B2,
B ′

1 = B1 \ B ′
2, T ′

1 = F and T ′
2 = E ∪ {x}. By the above argument, this shows that H

is in Iir, a contradiction. �
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Fig. 4 The graph H

4.3 The Case of General Graphs

In this section we shall prove Theorem 14 which provides an inductive characterisa-
tion of F , our main family of graphs.

Call graphs in Iir (see Lemma 11) basic irreflexive.

Definition 12 A connected graph H is basic if

1. H is a single loop, or
2. H is a basic irreflexive graph, or
3. H is obtained from a basic irreflexive graph Hir with colour classes B and T by

adding every edge (including loops) of the form (t, t ′) where t, t ′ ∈ T .

Definition 13 Let I be the smallest class of graphs such that:

1. I contains the basic graphs;
2. I is closed under disjoint union;
3. if H1 is a basic graph and H2 ∈ I then H1 � H2 ∈ I .

Theorem 14 The graph classes F and I coincide.

Proof To establish the inclusion I ⊆ F , we start by showing that every basic graph
is in F , i.e. that a basic graph does not contain any of the forbidden graphs. If H
is a single loop or a basic irreflexive graph, then this is immediate. Otherwise H is
obtained from a basic irreflexive graph Hir with colour classes B and T by adding
every edge of the form (t1, t2) where ti ∈ T . In particular, the loops form a clique and
no edge connects two non-loops; it is clear in that case that H contains none of B1,
B2, B3, B4. On the other hand if H contains B5 or B6, then Hir contains the path of
length 5 or the 6-cycle, contradicting the fact that Hir is basic.

Next we show that F is closed under disjoint union and adjunction of basic graphs.
It is obvious that the disjoint union of graphs that avoid the forbidden graphs will
also avoid these. So suppose that an adjunction H1 � H2, where H1 is a basic graph,
contains an induced forbidden graph B whose vertices are neither all in H1 nor H2;
without loss of generality H1 contains at least one loop, its loops form a clique and
none of its edges connects two non-loops. It is then easy to verify that B contains
both loops and non-loops. Because the other cases are similar, we prove only that B
is not B3. Observe that every loop in H1 is adjacent to every loop in H1 � H2. So b,
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c, and d (see Fig. 1) must be in H2. But if a is in H1, then it cannot be adjacent to a
loop in H2, so a is also in H2, a contradiction.

Now we must show that F ⊆ I , i.e. every graph in F can be obtained from the
basic graphs by disjoint union and adjunction of basic graphs. Suppose this is not the
case. If H is a counterexample of minimum size, then obviously it is connected, and
it contains at least one loop for otherwise it is a basic irreflexive graph. By Lemma 9,
H also contains at least one non-loop.

Let R(H) denote the subgraph of H induced by its set R(H) of loops, and let
J(H) denote the subgraph induced by J (H), the set of non-loops of H. Since H is
connected and neither B1 nor B2 is an induced subgraph of H, the graph R(H) is
also connected, and furthermore every vertex in J (H) is adjacent to some vertex in
R(H). By Lemma 9, we know that R(H) contains at least one universal vertex: let
U denote the (non-empty) set of universal vertices of R(H). Let J denote the set
of all a ∈ J (H) such that N(a) ∩ R(H) ⊆ U . Let us show that J 
= ∅. For every
u ∈ U , there is w ∈ J (H) not adjacent to u because otherwise H is obtained by
adjoining u to the rest of H, a contradiction with the choice of H. If this w has a
neighbour r ∈ R(H) \ U then there is some s ∈ R(H) \ U not adjacent to r , and the
graph induced by {w,u, s, r} contains B2 or B3, a contradiction. Hence, w ∈ J . Let
S denote the subgraph of H induced by U ∪ J . The graph S is connected. We claim
that the following properties also hold:

1. if a and b are adjacent non-loops, then N(a) ∩ U = N(b) ∩ U ;
2. if a is in a connected component of the subgraph of S induced by J with more

than one vertex, then for any other b ∈ J , one of N(a)∩U,N(b)∩U contains the
other.

The first statement holds because B1 is forbidden, and the second follows from
the first because B4 is also forbidden. Let J1, . . . , Jk denote the different connected
components of J in S. By (1) we may let N(Ji) denote the set of common neighbours
of members of Ji in U . By (2), we can re-order the Ji ’s so that for some 1 ≤ m ≤
k we have N(Ji) ⊆ N(Jj ) for all i ≤ m and all j > m, and, in addition, we have
m = 1 or |Ji | = 1 for all 1 ≤ i ≤ m. Let B denote the subgraph of S induced by
B = ⋃m

i=1 (Ji ∪ N(Ji)), and let C be the subgraph of H induced by H \B . We claim
that H = B � C. For this, it suffices to show that every element in

⋃m
i=1 N(Ji) is

adjacent to every non-loop c ∈ C. By construction this holds if c ∈ J ∩ C. Now
suppose this does not hold: then some x ∈ J (H)\J is not adjacent to some y ∈ N(Ji)

for some i ≤ m. Since x 
∈ J we may find some z ∈ R(H) \ U adjacent to x; it is of
course also adjacent to y. Since z 
∈ U there exists some z′ ∈ R(H) \ U that is not
adjacent to z, but it is of course adjacent to y. If x is adjacent to z′, then {x, z, z′}
induces a subgraph isomorphic to B2, a contradiction. Otherwise, {x, z, y, z′} induces
a subgraph isomorphic to B3, also a contradiction.

If every Ji with i ≤ m contains a single element, notice that B is a basic graph:
indeed, removing all edges between its loops yields a bipartite irreflexive graph which
contains neither the path of length 5 nor the 6-cycle, since B contains neither B5 nor
B6. Since this contradicts our hypothesis on H, we conclude that m = 1. But this
means that N(J1) is a set of universal vertices in H. Let u be such a vertex and let
D denote its complement in H: clearly H is obtained as the adjunction of the single
loop u to D, contradicting our hypothesis. This concludes the proof. �
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5 Algebraic Results

We need the following well-known auxiliary result. Note that the assumption of con-
servativity of the algebra AT in it is not essential. Note also that the assumptions of
this lemma effectively say that CSP(T) can simulate the graph k-colouring problem
(with k = |U |) or the directed st-connectivity problem.

Lemma 15 Let S,T be structures such that the algebra AT is conservative, let
s1, s2 ∈ S, and let R = {(f (s1), f (s2)) | f : S → T}.
1. If R = {(x, y) ∈ U2 | x 
= y} for some subset U ⊆ T with |U | ≥ 3 then V (AT)

admits the unary type.
2. If R = {(t, t), (t, t ′), (t ′, t ′)} for some distinct t, t ′ ∈ T then V (AT) admits at least

one of the following types: unary, lattice, semilattice.

Proof The assumption of this lemma implies that AT has a subalgebra (with universe
U and {t, t ′}, respectively) such that all operations of the subalgebra preserve the
relation R. It is well known (see, e.g., [21]) that all conservative operations preserving
the disequality relation on U are projections which proves the first statement, while
it is easy to check that the order relation on a 2-element set (such as the relation R

from the second statement) cannot admit operations satisfying identities (Id1)–(Id3),
so one can use Lemma 1 to prove the second statement. �

The following lemma connects the characterisation of bi-arc graphs given in [5]
with a type-omitting condition.

Lemma 16 Let H be a graph. Then the following conditions are equivalent:

1. the variety V (H) omits the unary type;
2. the graph H admits a conservative majority operation;
3. the graph H is a bi-arc graph.

Proof The equivalence of (2) and (3) is from [5], and (2) implies (1) by Lemma 1,
so the rest of this proof shows that (1) implies (3). We shall use the following con-
struction from [19]. Given a graph H, let K denote the irreflexive bipartite graph
obtained from H as follows: its vertices consist of two copies of the vertex set of
H, say H ′ = {x′ : x ∈ H } and H ′′ = {x′′ : x ∈ H }, with edges (x′, y′′) iff (x, y) is
an edge of H. In other words, K = H × K2 where K2 is the irreflexive edge. Let K

denote the algebra associated with KL.
By putting together Proposition 3.1 of [19] and Corollary 4.6 of [18], one immedi-

ately obtains that H is a bi-arc graph if and only if K is chordal bipartite and contains
no special edge-asteroids. We need not know what these two conditions on K mean—
it is shown in (proofs of) Theorems 3.1 and 3.2 of [18] that if K fails to satisfy either
of them then T = KL satisfies the conditions of Lemma 15(1) for suitable S, s1, s2,
and so V (K) admits the unary type. Hence, it only remains to show that the variety
V (K) omits the unary type whenever V (H) does so.

It is well known (see, e.g., Corollary 3.3 in [32]), that the unary type is present in
the variety generated by a conservative algebra A if and only if there exist elements
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a, b in the algebra such that each operation of A is a projection when restricted to
{a, b}. So we may assume now that, for every 2-element subset {a, b} of H , there is
an operation of H that is not a projection when restricted to {a, b}, and we need to
show the same for K.

For each operation (say k-ary) operation f of H, introduce an (2k − 1)-ary oper-
ation gf on K , as follows. Let x = (x

e1
1 , . . . , x

e2k−1
2k−1 ) be an element of K2k−1, where

x1, . . . , x2k−1 ∈ H and e1, . . . , e2k−1 ∈ {′,′′ }. Then obviously exactly one of ′ or ′′
appears at least k times; let ε denote this symbol; let i1, . . . , ik denote the first k

positions where it appears in the tuple x; then define

gf (x) = f (xi1, . . . , xik )
ε .

It is clear that this is a well-defined operation on K , and it is easy to see that it
preserves edges of K; since f is conservative, so is gf . Hence, gf is an operation
of K.

Let {xu, yv} be a 2-element subset of K . Suppose first that xu and yv belong to
different colour classes of K : then the restriction of gf to this subset satisfies the
property

gf (xu, . . . , xu, yv, xu . . . , xu) = f (x, . . . , x)u = xu

and similarly for g(yv, . . . , yv, xu, yv, . . . , yv). On the other hand if xu and yv are in
the same colour class, then the restriction of gf to {xu, yv} coincides with that of f

(with k −1 additional fictitious variables). It follows that in either case, the restriction
of gf is not a projection whenever the restriction of f is not. �

The following lemma establishes the implication (3)⇒(4) in Theorem 4.

Lemma 17 If H 
∈ F then V (H) admits a non-Boolean type.

Proof By Theorem 9.15 of [22], V (H) admits only the Boolean type if and only if H
admits a sequence of conservative operations satisfying certain identities in the spirit
of (Id1)–(Id3). (Note that Theorem 9.15 of [22] applies to the so-called locally finite
varieties, but every variety generated by a single finite algebra, such as V (H), has this
property [29]). By conservativity, such operations can be restricted to any subset of
H while satisfying the same identities, so the property of having only the Boolean
type in the variety generated by their conservative algebra is inherited by induced
subgraphs of H. It follows that it is enough to prove this lemma for the forbidden
graphs from Definition 3.

For the irreflexive odd cycles, the lemma follows immediately from the main
results of [4, 27]. The proof of Theorem 3.1 of [18] shows that the conditions of
Lemma 15(1) are satisfied by (some S, s1, s2 and) T = FL where F is the irreflexive
6-cycle. One can easily check that the reflexive 4-cycle is not a bi-arc graph, so we
can apply Lemma 16 in this case.

For the remaining forbidden graphs F from Definition 3, we use Lemma 15(2) with
T = FL. In each case, the binary relation of the structure S will be a short undirected
path, and s1, s2 will be the endpoints of the path. We will represent such a structure
S by a sequence of subsets of F (indicating lists assigned to vertices of the path). It
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can be easily checked that, in each case, the relation R defined as in Lemma 15(2) is
of the required form.

If F is the reflexive path of length 3, say a − b − c − d , then S = ac − bc −
ad − ac. If F is the irreflexive path of length 5, say a − b − c − d − e − f , then
S = ae − bd − ce − bf − ae. For graphs B1 − B6, we use notation from Fig. 1.
For B1, S = bc − bc − ab − ab − bc. For B2, S = bc − ac − ab − bc. For B3,
S = bc − ad − bd − bc. For B4, S = ae − bd − cd − ae. Finally, for both B5 and B6,
S = ac − b′c′ − ab − a′c′ − ac. �

5.1 Implication (4) ⇒ (1) in Theorem 4

We prove this implication in two steps: first for irreflexive graphs and then in general.
Recall the definition of basic irreflexive graphs from Lemma 11 and Definition 7.

Lemma 18 If H is a basic irreflexive graph then H admits conservative operations
satisfying (Id1)–(Id3) for n = 3.

Proof We shall show by induction on the size of H that there exist conservative op-
erations f1, f2, f3 preserving the graph H, obeying the identities (Id1)–(Id3) and
furthermore that satisfy the following condition (D):

For every x, y, z, n,m ∈ H such that n is adjacent to x and m is adjacent to z,
f1(x, y, z) is adjacent to n and f3(x, y, z) is adjacent to m.

The result is trivial for a one-element graph. If H is not connected, then H is the
disjoint union of proper subgraphs H1 and H2. Let f1, f2, f3 and g1, g2, g3 be the
desired operations on H1 and H2 respectively; we define operations h1, h2, h3 on H
as follows:

For every 1 ≤ s ≤ 3, let hs(x, y, z) = fs(x, y, z) if (x, y, z) ∈ H 3
1 and let

hs(x, y, z) = gs(x, y, z) if (x, y, z) ∈ H 3
2 ; if (x, y, z) ∈ Hi ×Hj ×Hk with i, j, k not

all equal, then let h1(x, y, z) = x and h3(x, y, z) = z, and finally let h2(x, y, z) = z

if (i, j, k) ∈ {(1,1,2), (2,2,1)} and let h2(x, y, z) = x otherwise.
It is immediate that identities (Id1) and (Id3) are satisfied and that each hs is a

conservative homomorphism. For (Id2): we may assume that x 
= y; if x and y are in
the same Hi then (Id2) follows from the fact that the fi and gi satisfy it; otherwise we
have that h1(x, x, y) = x = h2(x, y, y) and h2(x, x, y) = y = h3(x, y, y). It is easy
to see that condition (D) is satisfied by h1 and h3.

Now suppose that the basic graph H is connected, and hence is the special sum
of two smaller graphs. For the moment, it will be convenient to denote the colour
classes of H by C1 and C2; our first task is to show it suffices to define our operations
on C3

1 ∪ C3
2 . Indeed, suppose that we have functions F ′

1,F
′
2,F

′
3 : C3

1 ∪ C3
2 → H that

satisfy all the required identities, are edge-preserving and conservative. Then we may
extend these to full operations F1,F2,F3 : H 3 → H as follows: let

F1(x, y, z) =
{
F ′

1(x, y, z), if (x, y, z) ∈ C3
1 ∪ C3

2 ;
x, otherwise.



Theory Comput Syst (2012) 51:143–178 163

F3(x, y, z) =
{
F ′

3(x, y, z), if (x, y, z) ∈ C3
1 ∪ C3

2 ;
z, otherwise.

F2(x, y, z) =
⎧
⎨

⎩

F ′
2(x, y, z), if (x, y, z) ∈ C3

1 ∪ C3
2 ;

z, if (x, y, z) ∈ Ci × Ci × Cj for some i 
= j ;
x, otherwise.

Notice that distinct sets Ci ×Cj ×Ck and Ci′ ×Cj ′ ×Ck′ are in different connected
components of H3, unless i 
= i′, j 
= j ′ and k 
= k′; it follows immediately that the
Fi are edge-preserving; they are also clearly conservative. It is a simple matter to
verify that all the required identities are satisfied. Hence, from now on, we assume
without mention that in all triples (x, y, z) considered all the entries come from the
same colour class of the graph under consideration.

So let H be the special sum of two smaller graphs Hi with colour classes Bi and Ti ,
i = 1,2; by induction hypothesis H1 admits the required operations f1, f2, f3 and H2

admits operations g1, g2, g3 satisfying the necessary conditions. We define operations
F1,F2,F3 on H as follows. For convenience, let S = T1 ∪ B2, B = B1 ∪ B2, T =
T1 ∪T2. Notice that by definition of special sum S induces a complete bipartite graph
in H.

F1(x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

f1(x, y, z), if x, y, z ∈ H1, else
g1(x, y, z), if x, y, z ∈ H2, else
x, if y = z or x ∈ S, else
u, where u is the leftmost of {y, z} ∩ S.

F3(x, y, z) =

⎧
⎪⎪⎨

⎪⎪⎩

f3(x, y, z), if x, y, z ∈ H1, else
g3(x, y, z), if x, y, z ∈ H2, else
z, if x = y or z ∈ S, else
v, where v is the leftmost of {x, y} ∩ S.

F2(x, y, z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F1(x, x, z), if y = z, else
F3(x, z, z), if x = y, else
f2(x, y, z), if x, y, z ∈ H1, else
g2(x, y, z), if x, y, z ∈ H2, else
w, where w is the leftmost of {x, y, z} ∩ S.

Obviously all three operations are conservative, and by definition they obey all the
required identities. Now we verify that F1 satisfies condition (D): let (x,n) be an
edge of H: we show that F1(x, y, z) is adjacent to n. If x, y, z ∈ Hi for some i = 1,2
then this follows by induction hypothesis, and it is clearly true if F1(x, y, z) = x.
Otherwise, F1(x, y, z) = u for some u ∈ S; if x, y, z ∈ B then x ∈ B1 so n ∈ T1 is ad-
jacent to u. Otherwise x, y, z ∈ T , so x ∈ T2 hence n ∈ B2 is adjacent to u. The proof
that F3 satisfies (D) is identical. It remains to show that each Fi is edge-preserving.
Let (x, y, z) be adjacent to (x′, y′, z′) and suppose without loss of generality that
x, y, z ∈ B and x′, y′, z′ ∈ T . We start with F1. If x, y, z ∈ B1 then x′, y′, z′ ∈ T1

and hence F1 coincides with f1 on both tuples and we are done by induction hy-
pothesis. If F1(x, y, z) = x then by (D) we have F1(x

′, y′, z′) adjacent to x. Other-
wise, we have that x ∈ B1 (and thus x′ ∈ T1) and F1(x, y, z) = u ∈ B2; in any case
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F1(x
′, y′, z′) ∈ T1 so it is adjacent to u. The argument for F3 is identical. Now we

consider F2. Notice that by induction hypothesis and definition of the Fi , we have that
F2 coincides with f2 (or with g2) on tuples whose coordinates all lie in H1 (respec-
tively H2). If x, y, z ∈ B1, then certainly x′, y′, z′ ∈ T1, and then the result follows by
induction hypothesis and the last remark. Now we require the following claim:

Claim. Suppose that a, b, c do not all lie in the same Hi . If b = c or a = b then
F2(a, b, c) ∈ S.

Proof Suppose that b = c, so that F2(a, b, c) = F1(a, a, c). By hypothesis, a and c

do not lie in the same Hi , and in particular they are distinct, hence by definition of F1

we have that F1(a, a, c) = a if a ∈ S or F1(a, a, c) = u for some u ∈ S (here u = c

of course). The proof for the case a = b is identical. �

Now we can finish the proof. Suppose first that x, y, z are not all in the same Hi ; by
the claim F2(x, y, z) ∈ S. If x′, y′, z′ are not all in the same Hi then F2(x

′, y′, z′) ∈ S

also and we are done. Otherwise, x′, y′, z′ all lie in T1 (since one of them is a neigh-
bour of an element of B1) and hence F2(x

′, y′, z′) = f2(x
′, y′, z′) ∈ S and we are

done. Now suppose that x, y, z are all in B2 (we dealt with the case B1 earlier). Then
F2(x, y, z) = g2(x, y, z) ∈ S, so if x′, y′, z′ are not all in the same Hi we are done by
the claim again. Otherwise either x′, y′, z′ ∈ T1 so F2(x

′, y′, z′) = f2(x
′, y′, z′) ∈ S,

or else x′, y′, z′ ∈ T2: then F2(x
′, y′, z′) = g2(x

′, y′, z′) and we are done by induction
hypothesis. �

Lemma 19 If H ∈ F then H admits conservative operations satisfying (Id1)–(Id3)
for n = 3.

Proof We invoke the characterisation of F from Theorem 14. We will prove that H
has the required polymorphisms when H is a basic graph, and show that this property
is preserved under disjoint union and adjunction of basic graphs.

Let H be a basic graph. The result is trivial if H is a single loop, and if H is a
basic irreflexive graph then we invoke Lemma 18. So now assume that H is obtained
from some basic irreflexive graph H1 with colour classes B and T by adding all
edges (t, t ′) with t, t ′ ∈ T . By Lemma 18 there exist operations f1, f2, f3 on H1

satisfying the required identities; furthermore recall that we can assume that the fi

satisfy condition (D):

For every x, y, z, n,m ∈ H such that n is adjacent to x and m is adjacent to z,
f1(x, y, z) is adjacent to n and f3(x, y, z) is adjacent to m.

For convenience of notation, define, on triples (x1, x2, x3) such that {x1, x2, x3}
intersects the set T , two ternary operations μL and μR by μL(x1, x2, x3) = xj where
j = min{i : xi ∈ T } and μR(x1, x2, x3) = xk where k = max{i : xi ∈ T }. Notice that
both of these operations trivially preserve the edges of H. We define operations F1,
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F2 and F3 on H as follows:

F1(x1, x2, x3) =
⎧
⎨

⎩

x1, if x2 = x3, else
f1(x1, x2, x3), if {x1, x2, x3} intersects only one of B and T ,
μL(x1, x2, x3), otherwise.

F3(x1, x2, x3) =
⎧
⎨

⎩

x3, if x1 = x2, else
f3(x1, x2, x3), if {x1, x2, x3} intersects only one of B and T ,
μR(x1, x2, x3), otherwise.

F2(x1, x2, x3) =
{
f2(x1, x2, x3), if {x1, x2, x3} intersects only one of B and T ,
μL(x1, x2, x3), otherwise.

It is clear that all three operations are conservative, and that identities (Id1)
and (Id3) are satisfied. To prove (Id2), suppose without loss of generality that
x 
= y: if {x, y} intersects only one of B and T then F1(x, x, y) = f1(x, x, y) =
f2(x, y, y) = F2(x, y, y); on the other hand if {x, y} intersects both B and T then
F1(x, x, y) = F2(x, y, y) is the unique element in {x, y} that belongs to T . The proof
that F2(x, x, y) = F3(x, y, y) is similar.

Next we prove that property (D) holds for F1 (the proof for F3 is identi-
cal). Let n be a neighbour of x1. If F1(x1, x2, x3) = x1 the result is trivial, and
if F1(x1, x2, x3) = f1(x1, x2, x3) then we are done because f1 satisfies (D). If
F1(x1, x2, x3) = μL(x1, x2, x3), there are two cases: if x1 ∈ T then F1(x1, x2, x3) =
x1, otherwise x1 ∈ B forces n ∈ T so n is necessarily adjacent to μL(x1, x2, x3) ∈ T .

Finally we show that F1 is edge-preserving (the proof for F2 and F3 is identi-
cal). Let (x1, x2, x3) and (y1, y2, y3) be adjacent. Suppose first that x2 = x3; then
F1(x1, x2, x3) = x1. If y2 = y3 there is nothing to show so we may assume that
y2 
= y3. Since f1 has property (D) we may also assume with no loss of general-
ity that {y1, y2, y3} intersects B and T and hence F1(y1, y2, y3) is the leftmost yi

in T . If this is y1 we’re done, otherwise x1 must be in the clique T and we are also
done. So now suppose that x2 
= x3 and y2 
= y3. If the xi all lie in B or all in T and
the same holds for the yi , then we are done since f1 is a homomorphism and T is a
clique. Otherwise suppose without loss of generality that {y1, y2, y3} intersects both
B and T ; then some xi must be in T , and then in any case the values of F1 on both
triples lie in the clique T and hence are adjacent. This completes the proof for all
basic graphs.

The proof for disjoint union is identical to the one in the irreflexive case
(Lemma 18).

Finally we show that the property of admitting conservative operations satisfy-
ing (Id1)–(Id3) for n = 3 is preserved under adjunction of a basic graph. Let H1 be
a basic graph, where L1 and N1 denote the set of loops and non-loops of H1 respec-
tively, and let H2 satisfy our induction hypothesis, and let L2 and N2 denote the set
of loops and non-loops of H2 respectively. We may assume that L1 is non-empty,
and hence it is a clique. Let g1, g2, g3 be operations on H2 that satisfy all required
identities and property (D). By our earlier analysis, we know there exist operations
f1, f2, f3 on the basic graph H1 that satisfy all required identities and property (D),
and moreover satisfy the following condition (E):
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If {x, y, z} intersects L1 and y 
= z then
f1(x, y, z) and f3(y, z, x) belong to L1.

For convenience of notation, define two ternary operations λL, λR on triples
(x1, x2, x3) such that {x1, x2, x3} intersects the set L1 by λL(x1, x2, x3) = xj where
j = min{i : xi ∈ L1} and λR(x1, x2, x3) = xk where k = max{i : xi ∈ L1}. Define two
ternary operations νL and νR on triples (x1, x2, x3) such that {x1, x2, x3} intersects
the set H2 by νL(x1, x2, x3) = xj where j = min{i : xi ∈ H2} and νR(x1, x2, x3) = xk

where k = max{i : xi ∈ H2}. Notice that λL and λR are trivially edge-preserving, and
so are νL and νR if we restrict them to triples (x1, x2, x3) such that {x1, x2, x3} ⊆
N1 ∪ H2.

We define operations F1, F2 and F3 on H as follows:

F1(x1, x2, x3) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1, if x2 = x3, else
f1(x1, x2, x3), if {x1, x2, x3} ⊆ H1, else
g1(x1, x2, x3), if {x1, x2, x3} ⊆ H2, else
λL(x1, x2, x3), if {x1, x2, x3} intersects both L1 and H2,
νL(x1, x2, x3), otherwise.

F3(x1, x2, x3) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x3, if x1 = x2, else
f3(x1, x2, x3), if {x1, x2, x3} ⊆ H1, else
g3(x1, x2, x3), if {x1, x2, x3} ⊆ H2, else
λR(x1, x2, x3), if {x1, x2, x3} intersects both L1 and H2,
νR(x1, x2, x3), otherwise.

F2(x1, x2, x3) =

⎧
⎪⎪⎨

⎪⎪⎩

f2(x1, x2, x3), if {x1, x2, x3} ⊆ H1, else
g2(x1, x2, x3), if {x1, x2, x3} ⊆ H2, else
λL(x1, x2, x3), if {x1, x2, x3} intersects both L1 and H2,
νL(x1, x2, x3), otherwise.

It is clear that each Fi is conservative and that identities (Id1) and (Id3) are satis-
fied. To prove (Id2), suppose without loss of generality that x 
= y: if {x, y} is con-
tained in H1 or contained in H2 then the result follows from the fact that the fi and
gi satisfy (Id2); if {x, y} intersects both L1 and H2 then F1(x, x, y) = F2(x, y, y) is
the unique element in {x, y} that belongs to L1; if {x, y} intersects both N1 and H2

then F1(x, x, y) = F2(x, y, y) is the unique element in {x, y} that belongs to H2. The
proof that F2(x, x, y) = F3(x, y, y) is similar.

Next we prove that property (D) holds for F1 (the proof for F3 is identical). Let n

be a neighbour of x1. If F1(x1, x2, x3) = x1 the result is trivial, and if {x1, x2, x3}
is contained in H1 or contained in H2 then the result follows from the fact that
both fi and gi satisfy (D). Suppose now that {x1, x2, x3} intersects both L1 and H2.
Then F1(x1, x2, x3) ∈ L1; in particular if n ∈ H2 ∪ L1 we are done. If on the other
hand n ∈ N1 then x1 ∈ L1 so F1(x1, x2, x3) = λL(x1, x2, x3) = x1. If F1(x, y, z) =
νL(x, y, z) 
= x then x ∈ N1, n ∈ L1, and νL(x, y, z) ∈ H2, so we are done.
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Finally we show that F1 is edge-preserving (the proof for F2 and F3 is identical).
Let (x1, x2, x3) and (y1, y2, y3) be adjacent. We analyse the different cases. Without
loss of generality we may assume throughout that y2 
= y3.

(1) Suppose first that x2 = x3 so that F1(x1, x2, x3) = x1. (a) If {y1, y2, y3} ⊆ H1,
then F1(y1, y2, y3) = f1(y1, y2, y3); either x1 ∈ H2, forcing y1 ∈ L1 so by prop-
erty (E) we have that F1(y1, y2, y3) ∈ L1 adjacent to x1, or else x1 ∈ H1 and so
property (D) guarantees F1(y1, y2, y3) adjacent to x1. (b) If {y1, y2, y3} ⊆ H2,
then F1(y1, y2, y3) = g1(y1, y2, y3); if x1 ∈ H1 then it is in L1 and is adjacent
to F1(y1, y2, y3); otherwise x1 ∈ H2 and property (D) applies. (c) If {y1, y2, y3}
intersects both L1 and H2, then F1(y1, y2, y3) returns the leftmost entry which is
in L1; hence if x1 is not in N1 then it is adjacent to F1(y1, y2, y3). If x1 ∈ N1 then
y1 ∈ L1 so F1(y1, y2, y3) = y1 and we are done. (d) Suppose that {y1, y2, y3} in-
tersects both H1 and H2 but not L1: then F1(y1, y2, y3) returns the leftmost entry
in H2; if x1 is in H1 then it must be in L1; otherwise x1 ∈ H2 forces y1 ∈ H2; in
both cases x1 is adjacent to F1(y1, y2, y3).

From now on we may assume that x2 
= x3.
(2) Suppose {x1, x2, x3} ⊆ H1. (a) If {y1, y2, y3} ⊆ H2, then xi ∈ L1 for all i, so

F1(x1, x2, x3) ∈ L1 by property (E), so we are done. (b) If {y1, y2, y3} inter-
sects both L1 and H2, then F1(y1, y2, y3) returns the leftmost entry which is
in L1. There is some i such that yi ∈ H2, hence xi ∈ L1; by (E) it follows that
F1(x1, x2, x3) ∈ L1 and is adjacent to F1(y1, y2, y3). (c) Suppose that {y1, y2, y3}
intersects both H1 and H2 but not L1; then F1(y1, y2, y3) returns the leftmost
entry in H2. There is some i such that yi ∈ H2, hence xi ∈ L1; by (E) again
F1(x1, x2, x3) ∈ L1 and is adjacent to F1(y1, y2, y3).

(3) Suppose {x1, x2, x3} ⊆ H2. By the previous cases we may assume that {y1, y2, y3}
intersects both H1 and H2; in this case it must also intersect L1, hence
F1(y1, y2, y3) returns the leftmost entry which is in L1, which is adjacent to
every vertex in H2.

(4) Suppose {x1, x2, x3} intersects both L1 and H2. If the same holds for {y1, y2, y3},
the result follows from the fact that λL is edge-preserving. We may now as-
sume that {y1, y2, y3} intersects both H1 and H2 but not L1. Then by definition
F1(x1, x2, x3) ∈ L1 and F1(y1, y2, y3) ∈ H2, and hence are adjacent.

(5) Finally, suppose that each of {x1, x2, x3} and {y1, y2, y3} intersects both H1
and H2, but not L1. Then the result follows from the fact that νL is edge-
preserving. �

6 Symmetric Datalog Constructions

The goal of this section is to prove the following lemma.

Lemma 20 If H ∈ F then ¬CSP(HL) is in symmetric Datalog.

Recall that F = I by Theorem 14, and we will use the inductive definition of this
class in this section. We start by describing a method to compose symmetric Datalog
programs.
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6.1 Composing Symmetric Datalog Programs

The output of a Datalog program over τ with a set of IDBs I is a structure over the
extended signature τ ∪ I . Such a structure can naturally be fed as input to another
Datalog program working over this extended signature and using a set J of IDBs
disjoint from I . The result is a structure over the signature τ ∪ I ∪ J . Of course,
the effect of this composition can be obtained by simply merging the list of rules of
the two programs. However, this naive construction does not preserve the linearity or
symmetricity of the programs. The next two lemmas show that in fact symmetricity
can be preserved at the cost of an increase in the arity of the IDBs.

Lemma 21 Let D be a symmetric Datalog program over the signature τ =
{E1, . . . ,Ek} that outputs IDBs I1, . . . , It of respective arities a1, . . . , at . Let �Ij1 ∧
. . .∧ Ijs � denote the relation of arity aj1 + . . .+ajs which is the Cartesian product of
the (not necessarily distinct) relations Ij1, . . . , Ijs . For any c, there exists a symmetric
program Dc over the signature τ which correctly derives all the �Ij1 ∧ . . .∧ Ijs � with
s ≤ c.

Proof It suffices to show that this holds when c = 2 since the more general statement
can be obtained by iterating the construction detailed below. Note that we consider
�Ik ∧ I�� as a single2 IDB. We use x̄, ȳ and so on to denote tuples of variables and
say that x̄ and ȳ are disjoint if they share no variable. We also use E(w̄) to denote
some conjunction of EDBs. We construct D2 with the following rules.

1. Original rules of D are kept.
2. If Ij (x̄) ← E(w̄) is a non-recursive rule in D , we include for any 1 ≤ q ≤ t the

rule

�Ij (x̄) ∧ Iq(ȳ)� ← Iq(ȳ) ∧ E(w̄)

where ȳ is disjoint from x̄ and w̄. We also include the symmetric rule

Iq(ȳ) ← �Ij (x̄) ∧ Iq(ȳ)� ∧ E(w̄).

3. Finally, if Ij (x̄) ← Ik(ȳ) ∧ E(w̄) is a recursive rule of D , we include for any
1 ≤ q ≤ t the rule

�Iq(z̄) ∧ Ij (x̄)� ← �Iq(z̄) ∧ Ik(ȳ)� ∧ E(w̄)

where z̄ is disjoint from x̄, ȳ and w̄. Because D is symmetric, we know that the
symmetric of the above rule also appears in D2.

By construction D2 is symmetric. We claim that it computes the product relations
correctly. It can be easily seen using induction that all rules above are sound, i.e. there
is a derivation in D2 for any �Iq(z̄)∧Ij (x̄)� only if there are derivations for Iq(z̄) and

2As stated, the lemma distinguishes the IDBs �Ij ∧ Ik� and �Ik ∧ Ij �. However, the two are clearly
equivalent from a computational perspective. To simplify our description of D2, we thus implicitly assume
that any rule involving �Ij ∧ Ik� is accompanied by the counterpart rule using �Ik ∧ Ij �.



Theory Comput Syst (2012) 51:143–178 169

Ij (x̄) in D . For example, assume that �Iq(z̄) ∧ Ij (x̄)� is derived in D2 using the rule
�Iq(z̄) ∧ Ij (x̄)� ← �Iq(z̄) ∧ Ik(ȳ)� ∧ E(w̄) of type (3), and we already established
that Iq(z̄) and Ik(ȳ) are derived in D . Then Ij (x̄) (and Iq(z̄)) can be derived in D by
the definition of rules of type (3). The same argument shows that D and D2 derive
the same IDBs I1, . . . , It . In fact, it is convenient to view the execution of D2 as a
two-stage process where the original IDBs are derived first.

It remains to show that if there are derivations in D for Ij (x̄) and Ik(ȳ) then there
is a derivation of �Ij (x̄) ∧ Ik(ȳ)� in D2. Note first that since there is a derivation of
Ik(ȳ) in D , that same derivation exists in D2 (this is the purpose of rules of type (1)).
Now let

→ Ij1(x̄1) → . . . → Ijn(x̄n) → Ij (x̄)

denote the sequence of IDBs used in the derivation of Ij (x̄) in D . Suppose that
Ij1(x̄1) is derived in D by instantiating a first-order rule

Ij1(x̄1) ← E(w̄0).

The rules of type (2) provide a corresponding derivation of �Ij1(x̄1) ∧ Ik(ȳ)� in D2
through

�Ij1(x̄1) ∧ Ik(ȳ)� ← Ik(ȳ) ∧ E(w̄0).

Similarly, suppose that the derivation of Ij2(x̄2) in D is given by

Ij2(x̄2) ← Ij1(x̄1) ∧ E(w̄1).

The rules of type (3) provide a corresponding derivation of �Ij2(x̄2) ∧ Ik(ȳ)� in D2
through

�Ij2(x̄2) ∧ Ik(ȳ)� ← �Ij1(x̄1) ∧ Ik(ȳ)� ∧ E(w̄1).

Thus, we can successively derive �Ijt+1(x̄t+1) ∧ Ik(ȳ)�, from �Ijt (x̄t ) ∧ Ik(ȳ)� and
ultimately obtain a derivation of �Ij (x̄) ∧ Ik(ȳ)�. �

This construction is used to prove the following lemma which, intuitively, proves
that symmetric Datalog programs can be composed in a way that preserves the sym-
metry.

Lemma 22 Let D be a symmetric Datalog program over the signature τ =
{E1, . . . ,Eq}, and assume that the set of IDBs of D is I = {I1, . . . , Is}, with re-
spective arities a1, . . . , as . Further, let E be a symmetric Datalog program over the
signature τ ′ = τ ∪ I , and assume that the set of IDBs of E is J = {J1, . . . , Jt }, with
respective arities b1, . . . , bt . For a τ -structure H, let H′ denote the τ ′-structure de-
fined by D(H). One can construct a symmetric Datalog program F over the original
signature τ with the following properties:

(a) the IDBs I and J of D and E are IDBs in F ;
(b) Ik(x̄) is derived in F (H) iff Ik(x̄) is derived in D(H);
(c) J�(x̄) is derived in F (H) iff J�(x̄) is derived in E (H′).
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Proof Let c be such that each rule of E uses at most c EDBs in τ ′ − τ , i.e. at most
c of the IDBs of D . By the previous lemma, we can assume that c = 1 since we can
otherwise construct Dc and thus get relations that represent any conjunction of the Ij .

The IDBs of our new program F include the IDBs of D and E (i.e. the IDBs in
I ∪J ) as well as auxiliary IDBs of the form �J� ∧Ik� for any 1 ≤ k ≤ s and 1 ≤ � ≤ t .
The rules of F are constructed as follows.

1. Every rule of D is kept.
2. All rules of E which use only EDBs of the original signature τ are kept.
3. For any non-recursive rule of D , say Ik(x̄) ← E(w̄), we include for each 1 ≤ � ≤ t

the symmetric pair of rules

�J�(ȳ) ∧ Ik(x̄)� ← J�(ȳ) ∧ E(w̄)

J�(ȳ) ← �J�(ȳ) ∧ Ik(x̄)� ∧ E(w̄)

where ȳ is disjoint from x̄ and w̄.
4. For any recursive rule of D , say Ik1(x̄1) ← Ik2(x̄2) ∧ E(w̄), we include for each

1 ≤ � ≤ t the rule

�J�(ȳ) ∧ Ik1(x̄1)� ← �J�(ȳ) ∧ Ik2(x̄2)� ∧ E(w̄)

where ȳ is disjoint from x̄1, x̄2 and w̄. The symmetricity of D ensures that F
contains the symmetric rule:

�J�(ȳ) ∧ Ik2(x̄2)� ← �J�(ȳ) ∧ Ik1(x̄1)� ∧ E(w̄).

5. For any non-recursive rule of E that uses one of the Ik as an EDB, say J�(ȳ) ←
Ik(x̄) ∧ E(w̄), we include the symmetric pair of (recursive) rules

�J�(ȳ) ∧ Ik(x̄)� ← Ik(x̄) ∧ E(w̄)

Ik(x̄) ← �J�(ȳ) ∧ Ik(x̄)� ∧ E(w̄).

6. For any non-recursive rule of E that does not use any of the Ik as an EDB, say
J�(ȳ) ← E(w̄), we include for each 1 ≤ k ≤ s the symmetric pair of (recursive)
rules

�J�(ȳ) ∧ Ik(x̄)� ← Ik(x̄) ∧ E(w̄)

Ik(x̄) ← �J�(ȳ) ∧ Ik(x̄)� ∧ E(w̄).

7. For any recursive rule of E that use some Ik as an EDB, say J�1(ȳ1) ← J�2(ȳ2) ∧
Ik(x̄) ∧ E(w̄), we include the rule

�J�1(ȳ1) ∧ Ik(x̄)� ← �J�2(ȳ2) ∧ Ik(x̄)� ∧ E(w̄).

Because E is symmetric, we know that F also includes the rule

�J�2(ȳ2) ∧ Ik(x̄)� ← �J�1(ȳ1) ∧ Ik(x̄)� ∧ E(w̄).
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8. For any recursive rule of E that does not use an Ij as an EDB, say J�1(ȳ1) ←
J�2(ȳ2) ∧ E(w̄), we include for each 1 ≤ k ≤ s the rule

�J�1(ȳ1) ∧ Ik(x̄)� ← �J�2(ȳ2) ∧ Ik(x̄)� ∧ E(w̄)

where x̄ is disjoint from ȳ1, ȳ2 and w̄. Because E is symmetric, we know that F
also includes the rule

�J�2(ȳ2) ∧ Ik(x̄)� ← �J�1(ȳ1) ∧ Ik(x̄)� ∧ E(w̄).

We claim that F has the desired properties. Again, we first note that all the rules
are sound: if there is a derivation in F (H) for Ik(x̄) (resp. J�(ȳ); �J�(ȳ) ∧ Ik(x̄)�)
then there is a derivation for Ik(x̄) in D(H) (resp. a derivation for J�(ȳ) in E (H′);
derivations for Ik(x̄) in D(H) and for J�(ȳ) in E (H ′)). In other words, none of the
above rules can produce unwanted tuples.

It remains to show that F is complete, i.e. that if there exists a derivation for Ik(x̄)

in D(H) and a derivation for J�(ȳ) in E (H′) then there are derivations in F (H) for
Ik(x̄), J�(ȳ) and �J�(ȳ) ∧ Ik(x̄)�. This is obvious for Ik(x̄) since the original rules
of D are also rules of F . Similarly, rules of type (2) yield the claim if the derivation
of J�(ȳ) in E (H′) never uses one of the Ij as an EDB.

The non-trivial case consists of derivations of E (H′) which use the Ij as EDBs.
The crux of the argument rests on the possibility of “inverting” any sequence of
derivation steps in a symmetric program. Consider the sequence of IDBs in a valid
derivation path in D(H):

Ik1(x̄1) → Ik2(x̄2) → . . . → Ikn(x̄n).

If the ith step is obtained as Iki+1(x̄i+1) ← Iki
(x̄i ) ∧ E(w̄i) then the symmetricity of

D ensures that Iki
(x̄i) ← Iki+1(x̄i+1) ∧ E(w̄i) is also a valid derivation step in D(H)

and the sequence

Ikn(x̄n) → Ikn−1(x̄kn−1) → . . . → Ik1(x̄1)

also corresponds to a valid derivation path. In other words, if D(H) can produce a
derivation of Ikn(x̄n) from Ik1(x̄1) then it can also produce a derivation of Ik1(x̄1)

from Ikn(x̄n).
We begin with the following claim.

Claim 1. Assume that there exists a derivation of Ik(x̄) in D(H). Then there ex-
ists a derivation of J�(ȳ) in F (H) iff there exists a derivation of �J�(ȳ) ∧ Ik(x̄)�
in F (H).

Proof In the left to right implication, we assume that J�(ȳ) is derived in F (H) and
use a simple induction on the length of the derivation of Ik(x̄) in D(H). If Ik(x̄) is
derived from a non-recursive rule then the derivation of �J�(ȳ) ∧ Ik(x̄)� in F (H) is
obtained through a rule of type (3). The induction step is obtained through rules of
type (4).
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The right to left implication is established through the same basic idea but using
the inverse path of derivation. Assume that �J�(ȳ) ∧ Ik(x̄)� can be derived in F (H).
If Ik(x̄) is derived from a non-recursive rule then we can derive J�(ȳ) from �J�(ȳ) ∧
Ik(x̄)� because of the symmetric rule of type (3). If the derivation of Ik(x̄) in D(H)

is of length at least 2 then consider the last derivation step, say:

Ik(x̄) ← Ik′(x̄′) ∧ E(w̄).

By induction, there exists a derivation from �J�(ȳ) ∧ Ik′(x̄′)� to J�(ȳ) and the sym-
metric rule of type (4) provides the missing derivation step:

�J�(ȳ) ∧ Ik′(x̄′)� ← �J�(ȳ) ∧ Ik(x̄)� ∧ E(w̄).

This completes the proof of the claim. �

Using Claim 1, we can complete the proof of the lemma by showing that any
derivation of J�(ȳ) in E (H′) has a corresponding derivation of J�(ȳ) in F (H). Sup-
pose that the derivation of J�(ȳ) in E (H′) has length n. If n = 1 then J�(ȳ) is derived
in E (H′) from a non-recursive rule which may or may not use one of the Ij as an
EDB. By using a rule of type (5) or (6), we can obtain in F (H) a derivation for some
�J�(ȳ)∧ Ik(x̄)� where Ik(x̄) has a derivation3 in D(H). It then follows from Claim 1
that we can obtain in F (H) a derivation for J�(ȳ) as well as derivations for any of
the �J�(ȳ) ∧ Ik′(x̄′)� when Ik′(x̄′) has a derivation in D(H).

For the induction step, take n ≥ 2 and suppose the last step in the derivation of
J�(ȳ) in E (H′) is given by

J�(ȳ) ← J�n(ȳn) ∧ Ikn(x̄n) ∧ E(w̄n).

We know by the induction hypothesis that there is a derivation in F (H) for
�J�n(ȳn) ∧ Ikn(x̄n)�. A rule of type (7) can now complete the derivation of �J�(ȳ) ∧
Ikn(x̄n)� in F (H):

�J�(ȳ) ∧ Ikn(x̄n)� ← �J�n(ȳn) ∧ Ikn(x̄n)� ∧ E(w̄n).

Finally, Claim 1 ensures that J�(ȳ) itself can be derived in F (H). The case where
the last derivation step of J�(ȳ) in E (H′) does not rely on one of the Ij as an EDB is
covered by rules of type (8). �

6.2 Symmetric Programs for the List-Homomorphism Problem for Graphs in F

Our objective is to show that for any undirected graph H in F the set ¬CSP(HL)

of digraphs with H-lists that do not map homomorphically to HL is definable in
symmetric Datalog. We proceed by induction on the structure of H, i.e. using the

3Note that we can assume without loss of generality that there is at least one such Ik(x̄). If all the Ik are
empty in D(H) then derivations in E (H′) can only be constructed from rules that do not use the Ik as
EDBs and, as we remarked earlier, the rules of type (2) cover this case.
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inductive definition of F . If H consists of a single loop or non-loop, ¬CSP(HL) is
trivially definable in symmetric Datalog and it remains to show that this property
is preserved by the operators disjoint union, basic graph adjunction, formation of a
basic graph by completion of a colour class and special sum.

We begin with simple but useful observations that allow more concise and intu-
itive descriptions of our constructions. These remarks and basic tricks all rely on
Lemma 22.

1. In a number of constructions below, we want to obtain from two symmetric Dat-
alog programs D1 and D2 with goal predicates T1 and T2, respectively, a new
symmetric program D which accepts an input G if G is accepted by D1 or if G is
accepted by D2. This can be done effortlessly since we can simply take the union
of the rules of D1 and D2, create a new goal predicate T and include the rules
T ← T1 and T ← T2.

If instead we want D to accept G if both D1 and D2 accept G, we can use
Lemma 22 as follows. Consider the relational structure output by D1: this structure
includes the relation T1 which we can now use as an EDB in D . It now suffices to
add T1 to the body of any rule of D2 which has T2 as its head.

2. When analysing programs we always assume that the input structure G is con-
nected.4 This is possible without loss of generality. Indeed, consider Datalog pro-
grams over a signature τ that contains a binary relation E (this is the case in all
our constructions). It is straightforward to define a k-ary relation CE in symmetric
Datalog which contains the tuple (x1, . . . , xk) iff all xi are in the same connected
component of E. Moreover, Lemma 22 allows us to assume that any program D
has access to this relation as an EDB.

Suppose that the body of each rule in D includes the EDB condition
CE(x1, . . . , xk) where the xi are the variables occurring in the rule. Note that
if G is a digraph given as input to D , then any derivation of D(G) must now take
place within a single connected component of G. So the digraphs accepted by D
are disjoint unions of connected digraphs (recall Footnote 4), one of which is ac-
cepted by D . In our case, we construct Datalog programs which accept a digraph
G with H-lists iff there is no homomorphism from GL to HL and this of course
holds iff there is some connected component of G that does not map to HL. In
proving the correctness of a given program, we can therefore assume connectivity
of the input structure without loss of generality.

3. Let G be a digraph with H-lists. Any v ∈ G is potentially bound by more than one
unary predicate but of course this amounts to imposing a list on v which is the
intersection of all such unary predicates. We call this intersection the minimal list
of v and denote it as Lv . Clearly, we can construct a simple symmetric Datalog
program which returns a digraph G′ with H-lists over the same set of vertices
but such that every v is also bound by Lv . In the same vein, if T is a subset of
vertices of H and if G is a digraph with H-lists, we can construct in symmetric

4Note that because the target graph is an undirected graph, the direction of the edges of G can be ignored.
Therefore we say that two vertices u and v in G are connected if u and v are connected in G once the
direction of the edges are ignored.
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Datalog a digraph G∩T in which every vertex v is bound by a list L′
v which is the

intersection of the original Lv with T .
Furthermore, in the constructions below we typically assume that symmetric

programs D1,D2 exist for ¬CSP(HL
1 ) and ¬CSP(HL

2 ) and construct a symmetric
program D for ¬CSP(HL) where H is a graph obtained by combining H1 and H2
through some operator. Strictly speaking, the inputs of D are digraphs with H-
lists and thus cannot be fed as inputs to D1 or D2 since the latter only deal with
lists contained in H1 and H2, respectively. Note however that G∩H1 can be used
as an input to D1 and we use this trick repeatedly. If it is needed, we can also
use symmetric programs to construct digraphs G1 and G2 with, respectively, H1-
lists and H2-lists and new edge relations denoted E1 and E2, respectively. We can
further modify the rules of D1 and D2 by replacing the occurrences of E by E1
and E2 and by our first remark, we can then construct a symmetric program D
that accepts G iff D1 accepts G1 and D2 accepts G2 or a program D that accepts
G iff D1 accepts G1 or D2 accepts G2.

By the inductive definition of F , i.e. the definition of I , the following lemmas
complete the proof of Lemma 20.

Lemma 23 Suppose ¬CSP(HL
1 ) and ¬CSP(HL

2 ) are definable in symmetric Data-
log and let H be the disjoint union of H1 and H2. Then ¬CSP(HL) is also definable
in symmetric Datalog.

Proof Suppose ¬CSP(HL
1 ) and ¬CSP(HL

2 ) are recognised by symmetric Datalog
programs D1 and D2 with respective goal predicates K1 and K2. If H is the disjoint
union of H1 and H2, it is clear that a connected digraph G with H-lists maps into HL

iff G maps to HL
1 or to HL

2 . Of course G maps to HL
i iff G∩Hi does. In other words,

G does not map into HL iff D1 accepts G∩H1 and D2 accepts G∩H2 . As we noted in
the above remarks, this can be tested with a symmetric program D . �

Lemma 24 Let H1 be an irreflexive basic graph with colour classes B and T and
assume that ¬CSP(HL

1 ) is recognised by a symmetric Datalog program D1. If H is
the graph obtained by transforming T into a reflexive clique then ¬CSP(HL) is also
definable in symmetric Datalog.

Proof Let G be a digraph with H-lists. Suppose h is a homomorphism from GL

to HL. Because H1 is bipartite, any g ∈ G mapped to some b ∈ B must have its
neighbours mapped to T . So if g has some element t of T in its minimal list we
still have a homomorphism if we set h(g) = t . We can therefore assume that all lists
of G are either contained in T or contained in B and, more precisely, we can use
a symmetric Datalog program to trim the lists of G accordingly. Denote as GT and
GB the resulting partition of G’s vertices. If GB contains a loop there can be no
homomorphism from GL to HL and this condition is trivial to check with symmetric
Datalog. Let G′ be the digraph obtained from G by deleting all edges between vertices
in GT . One can verify that GL maps to HL iff G′ maps to HL

1 . It remains to show
that we can construct a symmetric program D which, on input GL, outputs G′. We
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have already shown that GL can be assumed to have lists either contained in B or T

and, accordingly, we can assume that D is given unary EDBs GT and GB . The edge
relation of G′ can now be defined with the non-recursive rules E′(x, y) ← E(x,y) ∧
GT (x) ∧ GB(y) and E′(x, y) ← E(x,y) ∧ GT (y) ∧ GB(x). �

Lemma 25 Let H1 be a basic graph and assume that ¬CSP(HL
1 ) and ¬CSP(HL

2 )

are recognised by symmetric Datalog programs D1,D2. If H is the result of adjoining
H1 to H2 then ¬CSP(HL) is also definable in symmetric Datalog.

Proof For i ∈ {1,2}, let Ri, Ii respectively denote the set of loops and non-loops
of Hi . Recall that the adjunction of H1 to H2 is the graph obtained by taking the
disjoint union of the two graphs and adding every edge from R1 to H2. Moreover,
because H1 is basic, its loops R1 form a clique and there are no edges between I1
and H2. Let GL be a digraph with H-lists and consider some vertex g whose minimal
list contains some element of r ∈ R1. If there is any homomorphism from GL to HL

then there is one such that h(g) ∈ R1. Indeed, if u ∈ G is such that h(u) ∈ I1 then
if (u, g) is an edge in G we must have h(g) ∈ R1 and if h(u) /∈ I1 then h(u) has an
edge to any r ∈ R1. Similarly, if the minimal list of g contains no element of R1 but
contains elements of both I1 and H2, then we can assume that h maps g to some
element of H2 because mapping g to I1 forces its neighbours to be mapped in R1.
These observations allow us to assume that each list in GL is either contained in R1,
contained in I1 or contained in H2. We can use a symmetric program to trim the lists
accordingly and obtain unary predicates r1, i1 and h2 that represent R1, I1 and H2,
respectively.

Let G1 and G2 be the subdigraphs of G induced respectively by vertices in r1 ∪ i1
and vertices in h2. It is now clear that GL maps to HL iff GL

1 maps to HL
1 , GL

2 maps
to HL

2 and G contains no edge with one endpoint in i1 and the other in h2. As in
the previous proofs, this condition can be easily checked because G1 and G2 can be
constructed in symmetric Datalog. �

Lemma 26 Let H1 and H2 be irreflexive graphs such that ¬CSP(HL
1 ) and

¬CSP(HL
2 ) are recognised by symmetric Datalog programs D1,D2. If H is the spe-

cial sum of H1 and H2 then ¬CSP(HL) is also definable in symmetric Datalog.

Proof Recall that the special sum of bipartite irreflexive graphs H1 and H2 with
colour classes Bi,Ti consists of the disjoint union of the graphs in which all edges
between T1 and B2 are added. Note first that G must be bipartite in order to map
to H and since bipartiteness can be checked in symmetric Datalog, we can assume
that any input G is indeed bipartite. More importantly, we can construct a symmetric
Datalog program that outputs unary relations BG,TG giving the colour classes of G
and use them as EDBs in the sequel. Any homomorphism from G to H must either
map all g ∈ BG to B1 ∪ B2 and all g ∈ TG to T1 ∪ T2 or map all g ∈ BG to T1 ∪ T2
and all g ∈ TG to B1 ∪ B2. To check if GL is in ¬CSP(HL) it suffices to verify
that neither of these options is viable. We show how to rule out the existence of a
homomorphism h mapping BG to B1 ∪B2 and TG to T1 ∪T2; the other case is handled
symmetrically (no pun intended). First we construct a digraph G′ by trimming the
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lists of GL, i.e. by intersecting the lists of any g ∈ TG with T1 ∪ T2 and the lists of
any g ∈ BG with B1 ∪ B2. We claim that if h is a homomorphism from (G′)L to HL

and if the minimal list of g ∈ TG contains elements from both T1 and T2 then there
exists a homomorphism h′ which maps g to some element of T1. Indeed, every v ∈ T2
only has neighbours in B2, all of which are connected to every vertex in T1. We can
therefore trim our lists further so that every list of a g ∈ TG is either contained in T1
or contained in T2. Similarly, we trim the lists so that every list of a g ∈ BG is either
contained in B1 or contained in B2. We can therefore construct in symmetric Datalog
a digraph G′′ with H-lists contained in one of the four Bi,Ti . Since there are edges
in H between any vertex in T1 and any vertex in B2 we can safely ignore the edges
in G′′ that connect vertices whose lists are respectively contained in T1 and B2. On
the other hand, if G′′ contains an edge between vertices whose lists are respectively
contained in B1 and T2 then there can be no homomorphism from G′′ to HL. With
this possibility ruled out, we construct in symmetric Datalog the digraphs G1 and G2
induced by the vertices whose lists are in T1 ∪ B1 and T2 ∪ B2, respectively. There is
a homomorphism from G′′ to H iff G1 maps to HL

1 and G2 maps to HL
2 and this can

be checked using D1 and D2, respectively. �

7 List Homomorphism Problems Definable in First-Order Logic

In this section we prove Theorem 5. We need the following characterisation of struc-
tures whose CSP is first-order definable [26]. Let T be a relational structure and let
a, b ∈ T . We say that b dominates a in T if, for any relation R(T), and any tuple
t ∈ R(T), replacement of any occurrence of a by b in t will yield a tuple of R(T).
Recall the definition of a direct power of a structure from Sect. 2.1. If T is a relational
structure, we say that the structure T2 dismantles to the diagonal if there exists a se-
quence of elements {a0, . . . , an} = T 2 \ {(a, a) : a ∈ T } such that, for all 0 ≤ i ≤ n,
ai is dominated in Ti , where T0 = T2 and Ti is the substructure of T2 induced by
T 2 \ {a0, . . . , ai−1} for i > 0.

Lemma 27 [26] Let T be a core relational structure. Then CSP(T) is first-order
definable if and only if T2 dismantles to the diagonal.

Proof of Theorem 5 We first prove that conditions (i) and (ii) are necessary. No-
tice that if CSP(HL) is first-order definable then so is CSP(KL) for any induced
substructure K of H. Let x and y be distinct vertices of H and let KL be the
substructure of HL induced by {x, y}. If x and y are non-adjacent loops, then
θ(K) = {(x, x), (y, y)} is the equality relation on {x, y}; if x and y are adjacent non-
loops, then θ(K) = {(x, y), (y, x)}, the adjacency relation of the complete graph on 2
vertices. It is well known (and can be easily derived from Lemma 27) that in neither
of these cases is CSP(KL) first-order definable. It follows that the loops of H induce
a complete graph and the non-loops induce a graph with no edges.

Now we prove (iii) is necessary. Suppose for a contradiction that there exist dis-
tinct elements x and y of I and elements n and m of R such that m is adjacent to x

but not to y, and n is adjacent to y but not to x. Then CSP(G) is first-order defin-
able, where G is the substructure of HL induced by {x, y,m,n}. By Lemma 27, G2



Theory Comput Syst (2012) 51:143–178 177

dismantles to the diagonal. Then (x, y) must be dominated by one of (x, x), (y, x) or
(y, y), since domination respects the unary relation {x, y}2 (on G2). But (m,n) is a
neighbour of (x, y) and none of the other three, a contradiction.

For the converse: we show that if H has the given form then we can dismantle
(HL)2 to the diagonal. Let x ∈ H : then (x1, x) and (x, x1) are dominated by (x, x).
Suppose that we have dismantled every element containing a coordinate equal to xi

with i ≤ j − 1: if x is any element of H such that the elements (xj , x) and (x, xj )

remain, then either x is a loop or x = xk with k ≥ j ; in any case the elements (xj , xk)

and (xk, xj ) are dominated by (x, x). In this way we can remove all pairs (x, y) with
one of x or y a non-loop. For the remaining pairs, notice that if u and v are any loops
then (u, v) is dominated (in what remains of (HL)2) by (u,u). �
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