The Approximability of Max CSP with Fixed-Value Constraints

VLADIMIR DEINEKO
University of Warwick, UK
\title{ PETER JONSSON AND MIKAEL KLASSON }

Linköpings Universitet, Sweden
AND

ANDREI KROKHIN

Durham University, UK

Abstract

In the maximum constraint satisfaction problem (MAX CSP), one is given a finite collection of (possibly weighted) constraints on overlapping sets of variables, and the goal is to assign values from a given finite domain to the variables so as to maximize the number (or the total weight, for the weighted case) of satisfied constraints. This problem is NP-hard in general, and, therefore, it is natural to study how restricting the allowed types of constraints affects the approximability of the problem. In this article, we show that any MAX CSP problem with a finite set of allowed constraint types, which includes all fixed-value constraints (i.e., constraints of the form $x=a$), is either solvable exactly in polynomial time or else is APX-complete, even if the number of occurrences of variables in instances is bounded. Moreover, we present a simple description of all polynomial-time solvable cases of our problem. This description relies on the well-known algebraic combinatorial property of supermodularity.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General
V. Deineko is partially supported by DIMAP. P. Jonsson was partially supported by the Center for Industrial Information Technology (CENIIT) under grant 04.01, and by the Swedish Research Council (VR) under grants 621-2003-3421 and 2006-4532. A. Krokhin was partially supported by the UK EPSRC grant EP/C543831/1.
Authors' addresses: V. Deineko, Warwick Business School, University of Warwick, Coventry, CV4 7AL, UK, e-mail: Vladimir.Deineko @ wbs.ac.uk; P. Jonsson and M. Klasson, Department of Computer and Information Science, Linköpings, Sweden, e-mail: \{peter.jonsson; mikael.klasson\}@ida.liu.se; A. Krokhin, Department of Computer Science, Durham University, Durham, DH1 3LE, UK, e-mail: andrei.krokhin@durham.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@ acm.org.
© 2008 ACM 0004-5411/2008/09-ART16 \$5.00 DOI 10.1145/1391289.1391290 http://doi.acm.org/ 10.1145/1391289.1391290

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Complexity of approximation, dichotomy, maximum constraint satisfaction, Monge properties, supermodularity

ACM Reference Format:

Deineko, V., Jonsson, P., Klasson. M., and Krokhin, A. 2008. The approximability of MAx CSP with fixed-value constraints. J. ACM 55, 4, Article 16, (September 2008), 37 pages. DOI $=$ 10.1145/1391289.1391290 http://doi.acm.org/10.1145/1391289.1391290

1. Introduction and Related Work

1.1. Background. Many combinatorial optimization problems are NP-hard, and the use of approximation algorithms is one of the most prolific techniques to deal with NP-hardness. However, hard optimization problems exhibit different behaviour with respect to approximability, and complexity theory for approximation is now a well-developed area [Ausiello et al. 1999].

Constraint satisfaction problems (CSPs) have always played a central role in this direction of research, since the CSP framework contains many natural computational problems, for example, from propositional logic and graph theory (see, e.g., Creignou et al. [2001] and Hell and Nešetřil [2004]). In a CSP, informally speaking, one is given a finite collection of constraints on overlapping sets of variables, and the goal is to decide whether there is an assignment of values from a given domain to the variables satisfying all constraints (decision problem) or to find an assignment satisfying maximum number of constraints (optimization problem). These are the main versions of the CSP, and there are many other versions obtained from them by modifying the objective (see, e.g., Creignou et al. [2001] and Krokhin et al. [2005]). In this article, we will focus on the optimization problems, which are known as maximum constraint satisfaction problems, MAX CSP for short. The most well-known examples of such problems are Max k-Sat and Max Cut. Let us now formally define MAX CSP.
Let D denote a finite set with $|D|>1$. Let $R_{D}^{(m)}$ denote the set of all m-ary predicates over D, that is, functions from D^{m} to $\{0,1\}$, and let $R_{D}=\bigcup_{m=1}^{\infty} R_{D}^{(m)}$. Also, let \mathbb{Z}^{+}denote the set of all non-negative integers.

Definition 1.1. A constraint over a set of variables $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is an expression of the form $f(\mathbf{x})$ where
$-f \in R_{D}^{(m)}$ is called the constraint predicate; and

- $\mathbf{x}=\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)$ is called the constraint scope.

The constraint $f(\mathbf{x})$ is said to be satisfied on a tuple $\mathbf{a}=\left(a_{i_{1}}, \ldots, a_{i_{m}}\right) \in D^{m}$ if $f(\mathbf{a})=1$.
Note that throughout the article the values 0 and 1 taken by any predicate will be considered as integers, not as Boolean values, and addition will always denote the addition of integers.

Definition 1.2. For a finite $\mathcal{F} \subseteq R_{D}$, an instance of $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ is a pair (V, C) where
$-V=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables taking their values from the set D;
$-C$ is a collection of constraints $f_{1}\left(\mathbf{x}_{1}\right), \ldots, f_{q}\left(\mathbf{x}_{q}\right)$ over V, where $f_{i} \in \mathcal{F}$ for all $1 \leq i \leq q$.

The goal is to find an assignment $\varphi: V \rightarrow D$ that maximizes the number of satisfied constraints, that is, to maximize the function $f: D^{n} \rightarrow \mathbb{Z}^{+}$, defined by $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{q} f_{i}\left(\mathbf{x}_{i}\right)$. If the constraints have (positive integral) weights ϱ_{i}, $1 \leq i \leq q$, then the goal is to maximize the total weight of satisfied constraints, that is, to maximize the function f defined by $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{q} \varrho_{i} \cdot f_{i}\left(\mathbf{x}_{i}\right)$.

Complexity classifications for various versions of constraint satisfaction problems have attracted much attention in the recent years (see survey [Krokhin et al. 2005]) because, as Creignou et al. [2001] nicely put it, these classifications "present a reasonably accurate bird's eye view of computational complexity and the equivalence classes it has created". Classifications with respect to a set of allowed constraint types (such as \mathcal{F} in $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ above) have been of particular interest, see for example, Börner et al. [2003], Bulatov [2003], Bulatov and Dalmau [2007], Bulatov et al. [2005], Creignou et al. [2001], Feder and Vardi [1998], and Hell [2003].

Boolean constraint satisfaction problems (i.e., when $D=\{0,1\}$) are by far better studied [Creignou et al. 2001] than the non-Boolean version. The main reason is, in our opinion, that Boolean constraints can be conveniently described by propositional formulas which provide a flexible and easily manageable tool, and which have been extensively used in complexity theory from its very birth. Moreover, Boolean CSPs suffice to represent a number of well-known problems and to obtain results clarifying the structure of complexity for large classes of interesting problems [Creignou et al. 2001]. In particular, Boolean CSPs were used to provide evidence for one of the most interesting phenomena in complexity theory, namely that interesting problems belong to a small number of complexity classes [Creignou et al. 2001], which cannot be taken for granted due to Ladner's theorem. After the pioneering work of Schaefer [1978] presenting a tractable versus NP-complete dichotomy for Boolean decision CSPs, many classification results have been obtained (see, e.g., Creignou et al. [2001]), most of which are dichotomies. In particular, a dichotomy in complexity and approximability for Boolean MAX CSP has been obtained by Creignou [1995], and it was slightly refined in Khanna et al. [2001] (see also Creignou et al. [2001]). The complexity of Boolean MAX CSP with arbitrary (i.e., not necessarily positive) weights was classified in Jonsson [2000].

Many papers on various versions of Boolean CSPs mention studying nonBoolean CSPs as a possible direction of future research, and additional motivation for it, with an extensive discussion, was given by Feder and Vardi [1998]. Dichotomy results on non-Boolean CSPs give a better understanding of what makes a computational problem tractable or hard, and they give a more clear picture of the structure of complexity of problems, since many facts observed in Boolean CSPs appear to be special cases of more general phenomena. Notably, many appropriate tools for studying non-Boolean CSPs have not been discovered until recently. For example, universal algebra tools have proved to be very fruitful when working with decision, counting, and quantified CSPs [Börner et al. 2003; Bulatov 2003, 2006; Bulatov and Dalmau 2007; Bulatov et al. 2005] while ideas from lattice theory, combinatorial optimization and operations research have been recently suggested for optimization problems [Cohen et al. 2005; Krokhin and Larose 2008].

The problem MAX CSP is NP-hard in general (i.e., without restrictions on the type of allowed constraints), and there is a significant body of results on algorithmic and complexity-theoretical aspects of this problem, including results on
superpolynomial general algorithms (e.g., Datar et al. [2003] and Williams [2005]), polynomial algorithms for special cases [Cohen et al. 2005; Krokhin and Larose 2008], explicit approximability bounds (e.g., Engebretsen [2004], Hast [2005], Håstad [2001, 2005], and Khot et al. [2007]), and complexity of approximation (e.g., Bazgan and Karpinski [2005], Creignou et al. [2001], and Jonsson et al. [2006]).

The main research problem that we will look at in this article is the following one.
Problem 1. Classify the problems $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ with respect to complexity of approximation.

We say that a predicate is nontrivial if it is not identically 0 . We will always assume that \mathcal{F} is finite and contains only non-trivial predicates. Whenever we do not specify which version (weighted or unweighted) we consider, we mean unweighted MAX CSP. Note that the definition allows one to repeat constraints in instances (we follow Creignou et al. [2001] in this), so our unweighted problem actually allows polynomially bounded weights. However, our tractability results will hold for the weighted version, while in our hardness results, for every \mathcal{F}, we will use only instances where every constraint occurs at most $k_{\mathcal{F}}$ times (where $k_{\mathcal{F}}$ is a constant depending on \mathcal{F}).

For the Boolean case, Problem 1 was solved in Creignou [1995], Creignou et al. [2001], and Khanna et al. [2001]. It appears that Boolean $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ problems exhibit a dichotomy in that such a problem is either solvable exactly in polynomial time or else APX-complete, in which case it does not admit a PTAS (polynomialtime approximation scheme) unless $\mathbf{P}=\mathbf{N P}$. These papers also describe the boundary between the two cases. This dichotomy result was extended to the case $|D|=3$ in Jonsson et al. [2006]. The complexity of non-Boolean Max CSP with arbitrary (i.e., not necessarily positive) weights was recently classified in Jonsson and Krokhin [2007].
1.2. Results. For a subset $D^{\prime} \subseteq D$, let $u_{D^{\prime}}$ denote the predicate such that $u_{D^{\prime}}(x)=1$ if and only if $x \in D^{\prime}$. Let $\mathcal{U}_{D}=\left\{u_{D^{\prime}} \mid \varnothing \neq D^{\prime} \subseteq D\right\}$, that is, \mathcal{U}_{D} is the set of all non-trivial unary predicates on D. Furthermore, let $\mathcal{C}_{D}=\left\{u_{\{d\}} \mid d \in D\right\}$. Note that predicates from \mathcal{C}_{D} give rise to constraints of the form $x=d$, that is, fixed-value constraints.

The decision problems $\operatorname{CSP}(\mathcal{F})$ are similar to $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$, but the the task is to decide whether all constraints in a given instance can be simultaneously satisfied. Problems of the form $\operatorname{CSP}\left(\mathcal{F} \cup \mathcal{U}_{D}\right)$ are known as conservative (or list) CSPs, and their complexity has been completely classified by Bulatov [2003], while a complexity classification for the problems of the form $\operatorname{CSP}\left(\mathcal{F} \cup \mathcal{C}_{D}\right)$ would imply a classification for all problems $\operatorname{CSP}(\mathcal{F})$ [Bulatov et al. 2005].

In this article, we solve the above Problem 1 for all sets of the form $\mathcal{F} \cup \mathcal{C}_{D}$ where D is any finite set. (Note that this does not necessarily imply a full solution to Problem 1, as it would for decision problems.) Our result is parallel to Bulatov's classification of conservative CSPs [Bulatov 2003], but our techniques are quite different from the universal-algebraic techniques used in Bulatov [2003]. The universal-algebraic techniques from Bulatov [2003] and Bulatov et al. [2005] cannot be applied in the optimization setting because the basic properties of decision CSPs that make these techniques useful are not satisfied by MAX CSP.

It was suggested in Section 6 of Cohen et al. [2005] that $\operatorname{Max} \operatorname{CSP}\left(\mathcal{F} \cup \mathcal{C}_{D}\right)$ is solvable exactly in polynomial time if and only if all predicates in \mathcal{F} are supermodular with respect to some linear ordering on D (see definitions in Section 4). We prove that this is indeed the case, and that in all other cases the problem $\operatorname{Max} \operatorname{CSP}\left(\mathcal{F} \cup \mathcal{C}_{D}\right)$ is APX-complete. Moreover, we show that every APXcomplete problem of the above form is APX-complete even when we further restrict it to instances where the number of occurrences of variables is bounded by some (possibly large) constant. Note that approximability properties for constraint problems with the bounded occurrence property (as well as for related problems on graphs with bounded degree) have been intensively studied in the literature (see, e.g., Alimonti and Kann [2000], Berman and Karpinski [2003], Håstad [2000], and Karpinski [2001]).

Our classification result uses the combinatorial property of supermodularity, which is a well-known source of tractable optimization problems [Burkard et al. 1996; Fujishige 2005; Topkis 1998], and the technique of strict implementations [Creignou et al. 2001; Khanna et al. 2001] which allows one to show that an infinite family of problems can express, in a regular way, one of a few basic hard problems. We remark that the idea to use supermodularity in the analysis of the complexity of $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ is very new, and has not been even suggested in the literature prior to Cohen et al. [2005]. It was shown in Cohen et al. [2005] and Jonsson et al. [2006] that supermodularity is the only source of tractability for problems of the form $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ when D is small (i.e., $|D| \leq 3$). This, together with the results obtained in this article, suggests that supermodularity is indeed the appropriate tool for tackling Problem 1.

Some of our technical results (those in Section 5) are of independent interest in combinatorics. Klinz et al. [1995] study how one can permute rows and columns of a $0-1$ matrix so as to avoid a collection of given forbidden submatrices; some results of this nature have later been used in constructing phylogenetic trees [Pe'er et al. 2004]. Klinz et al. [1995] obtain many results in this direction, but they leave open the case when matrices are square and rows and columns must be permuted by the same permutation (see Section 6 of Klinz et al. [1995]). Our results clarify the situation in this special case for one type of forbidden matrices considered in Theorem 4.5 of Klinz et al. [1995].

The structure of the article is as follows: Section 2 contains definitions of approximation complexity classes and reductions. In Section 3, we describe our reduction techniques, and in Section 4 we give the basics of supermodularity and discuss the relevance of supermodularity in the study of MAX CSP. Section 5 contains technical results that are used in the proof of the main classification result of the article, and this proof can be found in Section 6. Finally, in Section 7, we discuss an application of our results to the optimization version of the LIST H-COLORING problem for digraphs. Some of the technical proofs omitted from the main body of this article can be found in Appendices.

2. Basics of Approximability

A combinatorial optimization problem is defined over a set of instances (admissible input data); each instance \mathcal{I} has a finite set $\operatorname{sol}(\mathcal{I})$ of feasible solutions associated with it. The objective function attributes a positive integer cost to every solution in $\operatorname{sol}(\mathcal{I})$. The goal in an optimization problem is, given an instance \mathcal{I}, to find a feasible
solution of optimum cost. The optimal cost is the largest one for maximization problems and the smallest one for minimization problems. A combinatorial optimization problem is said to be an NP optimization (NPO) problem if its instances and solutions can be recognized in polynomial time, the solutions are polynomial-bounded in the input size, and the objective function can be computed in polynomial time (see, e.g., Ausiello et al. [1999]).

Definition 2.1. A solution $s \in \operatorname{sol}(\mathcal{I})$ to an instance \mathcal{I} of an NPO problem Π is r-approximate if

$$
\max \left\{\frac{\operatorname{cost}(s)}{\operatorname{Opt}(\mathcal{I})}, \frac{\operatorname{Opt}(\mathcal{I})}{\operatorname{cost}(s)}\right\} \leq r,
$$

where $O p t(\mathcal{I})$ is the optimal cost for a solution to \mathcal{I}. An approximation algorithm for an NPO problem Π has performance ratio $\mathcal{R}(n)$ if, given any instance \mathcal{I} of Π with $|\mathcal{I}|=n$, it outputs an $\mathcal{R}(n)$-approximate solution.
Definition 2.2. PO is the class of NPO problems that can be solved (to optimality) in polynomial time. An NPO problem Π is in the class APX if there is a polynomial time approximation algorithm for Π whose performance ratio is bounded by a constant.

The following result is contained in Proposition 2.3 [Cohen et al. 2005] and its proof.

Lemma 2.3. Every (weighted or not) problem $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ belongs to APX. Moreover, if a is the maximum arity of any predicate in \mathcal{F} then there is a polynomial time algorithm that, for every instance \mathcal{I} of $\operatorname{MAx} \operatorname{CSP}(\mathcal{F})$, produces a solution satisfying at least $\frac{q}{|D|^{a}}$ constraints, where q is the number of constraints in \mathcal{I}.

Completeness in APX is defined using an appropriate reduction, called $A P$ reduction. Our definition of this reduction follows [Creignou et al. 2001; Khanna et al. 2001].

Definition 2.4. An NPO problem Π_{1} is said to be AP-reducible to an NPO problem Π_{2} if two polynomial-time computable functions F and G and a constant α exist such that
(a) for any instance \mathcal{I} of $\Pi_{1}, F(\mathcal{I})$ is an instance of Π_{2};
(b) for any instance \mathcal{I} of Π_{1}, and any feasible solution s^{\prime} of $F(\mathcal{I}), G\left(\mathcal{I}, s^{\prime}\right)$ is a feasible solution of \mathcal{I};
(c) for any instance \mathcal{I} of Π_{1}, and any $r \geq 1$, if s^{\prime} is an r-approximate solution of $F(\mathcal{I})$ then $G\left(\mathcal{I}, s^{\prime}\right)$ is an $(1+(r-1) \alpha+o(1))$-approximate solution of \mathcal{I} where the o-notation is with respect to $|\mathcal{I}|$.
An NPO problem Π is APX-hard if every problem in APX is $A P$-reducible to it. If, in addition, Π is in APX then Π is called APX-complete.

It is a well-known fact (see, e.g., Section 8.2.1 in Ausiello et al. [1999]) that $A P$ reductions compose. We shall now give an example of an APX-complete problem, which will be used extensively in this article.

Example 2.5. Given a graph $G=(V, E)$, the Maximum k-Colorable SubGRAPH problem, $k \geq 2$, is the problem of maximizing $\left|E^{\prime}\right|, E^{\prime} \subseteq E$, such that the
graph $G^{\prime}=\left(V, E^{\prime}\right)$ is k-colorable. This problem is known to be APX-complete (it is Problem GT33 in Ausiello et al. [1999]). Let neq ${ }_{k}$ denote the binary disequality predicate on $D=\{0,1, \ldots, k-1\}, k \geq 2$, that is, $n e q_{k}(x, y)=1 \Leftrightarrow x \neq y$. Consider the problem Max $\operatorname{CSP}\left(\left\{\right.\right.$ neq $\left.\left._{k}\right\}\right)$ restricted to instances where every pair of variables appears in the scope of at most one constraint. This problem is exactly the Maximum k-colorable Subgraph problem. To see this, think of vertices of a given graph as of variables that take values from D, and introduce the constraint neq $q_{k}(x, y)$ for every pair of variables x, y such that (x, y) is an edge in the graph. It follows that the problem $\operatorname{MAx} \operatorname{CSP}\left(\left\{n e q_{k}\right\}\right)$ is APX-complete.

Note that the weighted $\operatorname{MAx} \operatorname{CSP}\left(\left\{n e q_{k}\right\}\right)$ problem coincides with the wellknown problem Max k-Cut (it is Problem ND17 in Ausiello et al. [1999]). The problem MAX 2-CUT is usually referred to as simply MAX Cut.

In some of our hardness proofs, it will be convenient for us to use another type of approximation-preserving reduction, called an L-reduction [Ausiello et al. 1999].

Definition 2.6. An NPO problem Π_{1} is said to be L-reducible to an NPO problem Π_{2} if two polynomial-time computable functions F and G and positive constants α, β exist such that
(a) given any instance \mathcal{I} of Π_{1}, algorithm F produces an instance $\mathcal{I}^{\prime}=F(\mathcal{I})$ of Π_{2}, such that the cost of an optimal solution for $\mathcal{I}^{\prime}, \operatorname{Opt}\left(\mathcal{I}^{\prime}\right)$, is at most $\alpha \cdot \operatorname{Opt}(\mathcal{I})$;
(b) given $\mathcal{I}, \mathcal{I}^{\prime}=F(\mathcal{I})$, and any solution s^{\prime} to \mathcal{I}^{\prime}, algorithm G produces a solution s to \mathcal{I} such that $|\operatorname{cost}(s)-\operatorname{Opt}(\mathcal{I})| \leq \beta \cdot\left|\operatorname{cost}\left(s^{\prime}\right)-\operatorname{Opt}\left(\mathcal{I}^{\prime}\right)\right|$.
It is well known (see, e.g., Lemma 8.2 in Ausiello et al. [1999]) that, within APX, the existence of an L-reduction from Π_{1} to Π_{2} implies the existence of an $A P$-reduction from Π_{1} to Π_{2}.

3. Reduction Techniques

The main reduction technique in our APX-completeness proofs is based on strict implementations, see Creignou et al. [2001] and Khanna et al. [2001], where this notion was introduced for the Boolean case. We will give this definition in a slightly different form from that of [Creignou et al. 2001; Khanna et al. 2001], but it can easily be checked to be equivalent to the original one (in the case $|D|=2$).

Definition 3.1. Let $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ be two disjoint sets of variables. The variables in Y are called primary and the variables in Z auxiliary. The set Z may be empty. Let $g_{1}\left(\mathbf{y}_{1}\right), \ldots, g_{s}\left(\mathbf{y}_{s}\right), s>0$, be constraints over $Y \cup Z$. If $g\left(y_{1}, \ldots, y_{m}\right)$ is a predicate such that the equality

$$
g\left(y_{1}, \ldots, y_{m}\right)+(\alpha-1)=\max _{Z} \sum_{i=1}^{s} g_{i}\left(\mathbf{y}_{i}\right)
$$

holds for all y_{1}, \ldots, y_{m}, and some fixed $\alpha \in \mathbb{Z}^{+}$, then this equality is said to be a strict α-implementation of g from g_{1}, \ldots, g_{s}.

We use $\alpha-1$ rather than α in the above equality to ensure that this notion coincides with the original notion of a strict α-implementation for Boolean constraints [Creignou et al. 2001; Khanna et al. 2001]. The intuition behind the notion of strict implementation is that it allows one to modify instances while keeping
control over costs of solutions. For example, assume that we have a constraint $g(u, v)$ in an instance \mathcal{I} of MAX CSP, and there is a strict 2-implementation $g\left(y_{1}, y_{2}\right)+1=\max _{z}\left(g_{1}\left(y_{1}, z\right)+g_{2}\left(z, y_{2}\right)\right)$. Then the constraint $g(u, v)$ can be replaced by two constraints $g_{1}(u, z), g_{2}(z, v)$ such that z does not appear in \mathcal{I}, and we know that every solution of cost c to \mathcal{I} can be modified (by choosing an appropriate value for z) to a solution of cost $c+1$ to the new instance.

We say that a collection of predicates \mathcal{F} strictly implements a predicate g if, for some $\alpha \in \mathbb{Z}^{+}$, there exists a strict α-implementation of g using predicates only from \mathcal{F}. In this case we write $\mathcal{F} \stackrel{s}{\Longrightarrow}{ }_{\alpha} f$. We write $\mathcal{F} \xlongequal{s} f$ if $\mathcal{F} \xlongequal{{ }^{s}}{ }_{\alpha} f$ for some α. It is not difficult to show that if f can be obtained from \mathcal{F} by a series of strict implementations then it can also be obtained by a single strict implementation (for the Boolean case, this is shown in Lemma 5.8 [Creignou et al. 2001]). In this article, we will use about 60 specific strict implementations for the case when $|D|=4$. Each of them can be straightforwardly verified by hand, or by a simple computer program. ${ }^{1}$

The following lemma is a simple (but important) example of how strict implementations work.

Lemma 3.2. \mathcal{C}_{D} strictly implements every predicate in \mathcal{U}_{D}.
Proof. It is easy to see that, for any $D^{\prime} \subseteq D, u_{D^{\prime}}(x)=\sum_{d \in D^{\prime}} u_{\{d\}}(x)$ is a strict 1-implementation.

In our proofs, we will use problems with the bounded occurrence property, and we now introduce notation for such problems.

Definition 3.3. $\operatorname{Max} \operatorname{CSP}(\mathcal{F})-k$ will denote the $\operatorname{problem} \operatorname{Max} \operatorname{CSP}(\mathcal{F})$ restricted to instances where the number of occurrences of each variable is bounded by k. We will write that $\operatorname{Max} \operatorname{CSP}(\mathcal{F})-B$ is $\mathbf{A P X}$-complete to denote that $\operatorname{Max} \operatorname{CSP}(\mathcal{F})-k$ is APX-complete for some k.

Note that, by definition, repetitions of constraints in instances of MAx CSP are allowed. If a variable occurs t times in a constraint which appears s times in an instance, then this would contribute $t \cdot s$ to the number of occurrences of that variable in the instance.

Lemma 3.4. If \mathcal{F} strictly implements a predicate f, and $\operatorname{MAXCSP}(\mathcal{F} \cup\{f\})-B$ is APX-complete, then $\operatorname{Max} \operatorname{CSP}(\mathcal{F})-B$ is $\mathbf{A P X}$-complete as well.

Proof. This lemma for the Boolean case, but without the assumption on bounded occurrences, is Lemma 5.18 in Creignou et al. [2001]. Our proof is almost identical to the proof of Lemma 5.18 in Creignou et al. [2001], and it uses the same $A P$-reduction. Essentially, we only need to verify that the mapping F in this reduction preserves the bounded occurrence property.

Let k be a number such that $\operatorname{Max} \operatorname{CSP}(\mathcal{F} \cup\{f\})-k$ is APX-complete and let $\alpha \in$ \mathbb{Z}^{+}be such that $\mathcal{F} \xlongequal{s}{ }_{\alpha} f$. Take any instance \mathcal{I} of $\operatorname{Max} \operatorname{CSP}(\mathcal{F} \cup\{f\})-k$. Note that every predicate in \mathcal{F} can be (trivially) strictly α-implemented from \mathcal{F} in such a way that each auxiliary variable appears only once in the strict implementation

[^0](simply use any satisfiable collection of $\alpha-1$ constraints with no repetitions of variables); this is a small technicality which ensures uniformity in the following transformation of instances. Replace every constraint in \mathcal{I} by a set of constraints appearing in the right-hand side of its strict α-implementation from \mathcal{F}, keeping the same primary variables and using fresh copies of auxiliary variables every time. Denote the obtained instance by \mathcal{I}^{\prime}. The function F in this $A P$-reduction will be such that $F(\mathcal{I})=\mathcal{I}^{\prime}$ for all \mathcal{I}. Let t be the maximum number of occurrences of a variable (primary or auxiliary) in the right-hand side of the strict implementation of f from \mathcal{F}. It is clear that \mathcal{I}^{\prime} is an instance of $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$, and that the number of occurrences of any variable in \mathcal{I}^{\prime} is bounded by $k^{\prime}=t k$.

Let V^{\prime} be the set of variables in \mathcal{I}^{\prime}. Let $\varphi^{\prime}: V^{\prime} \rightarrow D$ be an r-approximate solution to \mathcal{I}^{\prime}. The mapping G uses two possible solutions to \mathcal{I} and takes the better of the two. The first solution is $\left.\varphi^{\prime}\right|_{V}$, while the second is a solution satisfying $\beta=\frac{q}{|D|^{a}}$ constraints which exists by Lemma 2.3 (here a is the maximum arity of constraints in $\mathcal{F} \cup\{f\}$).

One can show, by literally repeating the argument in the proof of Lemma 5.18 in Creignou et al. [2001], that $G\left(\varphi^{\prime}\right)$ is an r^{\prime}-approximate solution to \mathcal{I} where $r^{\prime} \leq 1+\gamma(r-1)$ with $\gamma=\beta(\alpha-1)+1$.

We have constructed an $A P$-reduction from $\operatorname{Max} \operatorname{CSP}(\mathcal{F} \cup\{f\})-k$ to $\operatorname{Max} \operatorname{CSP}(\mathcal{F})-k^{\prime}$, thus proving the lemma.

Lemma 3.4 will be used as follows in our APX-completeness proofs: if \mathcal{F}^{\prime} is a fixed finite collection of predicates each of which can be strictly implemented by \mathcal{F} then we can assume that $\mathcal{F}^{\prime} \subseteq \mathcal{F}$. For example, if \mathcal{F} contains a binary predicate f then we can assume, at any time when it is convenient, that \mathcal{F} also contains $f^{\prime}(x, y)=f(y, x)$, since this equality is a strict 1 -implementation of f^{\prime}.

Finally, we will use a technique based on domain restriction. For a subset $D^{\prime} \subseteq D$, let $\left.\mathcal{F}\right|_{D^{\prime}}=\left\{\left.f\right|_{D^{\prime}} \mid f \in \mathcal{F}\right.$ and $\left.f\right|_{D^{\prime}}$ is nontrivial $\}$.

Lemma 3.5. Let $D^{\prime} \subseteq D$ and $u_{D^{\prime}} \in \mathcal{F}$. If $\operatorname{Max} \operatorname{CSP}\left(\left.\mathcal{F}\right|_{D^{\prime}}\right)-B$ is APXcomplete, then so is $\operatorname{Max} \operatorname{CSP}(\mathcal{F})-B$.

Proof. Let k be some number such that $\operatorname{Max} \operatorname{CSP}\left(\left.\mathcal{F}\right|_{D^{\prime}}\right)-k$ is $\mathbf{A P X}$-complete. We establish an L-reduction from $\operatorname{Max} \operatorname{CSP}\left(\left.\mathcal{F}\right|_{D^{\prime}}\right)-k$ to $\operatorname{Max} \operatorname{CSP}(\mathcal{F})-k^{\prime}$ where $k^{\prime}=2 k$.

An instance \mathcal{I} of $\operatorname{Max} \operatorname{CSP}\left(\left.\mathcal{F}\right|_{D^{\prime}}\right)-k$ corresponding to $f\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{i=1}^{q} f_{i}\left(\mathbf{x}_{i}\right)$ will be mapped to an instance \mathcal{I}^{\prime} corresponding to $f^{\prime}\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{i=1}^{q} f_{i}^{\prime}\left(\mathbf{x}_{i}\right)+k \sum_{i=1}^{n} u_{D^{\prime}}\left(x_{i}\right)$ where each $f_{i}^{\prime} \in \mathcal{F}$ is such that $\left.f_{i}^{\prime}\right|_{D^{\prime}}=f_{i}$. We may without loss of generality assume that all n variables x_{i} actually appear in constraint scopes in \mathcal{I}. Note that \mathcal{I}^{\prime} is indeed an instance of $\operatorname{Max} \operatorname{CSP}(\mathcal{F})-k^{\prime}$.

Let $V=\left\{x_{1}, \ldots, x_{n}\right\}$ and fix an element $d \in D^{\prime}$. If $\varphi^{\prime}: V \rightarrow D$ is a solution to \mathcal{I}^{\prime}, then it is modified to a solution to \mathcal{I} as follows: set $\varphi\left(x_{i}\right)=d$ whenever $\varphi^{\prime}\left(x_{i}\right) \notin D^{\prime}$, and $\varphi\left(x_{i}\right)=\varphi^{\prime}\left(x_{i}\right)$ otherwise.

We will show that this pair of mappings is an L-reduction for suitable α and β.
Note that, for any solution to \mathcal{I}^{\prime}, changing all values outside of D^{\prime} to any values in D^{\prime} can only increase the cost of the solution. This follows from the fact that, by changing any value outside of D^{\prime} to a value in D^{\prime}, we can lose at most k satisfied constraints, but we satisfy k constraints of the form $u_{D^{\prime}}(x)$. It follows that $O p t\left(\mathcal{I}^{\prime}\right)=O p t(\mathcal{I})+k n$.

Let a be the maximum arity of constraints in $\left.\mathcal{F}\right|_{D^{\prime}}$. Let $c=\frac{1}{|D|^{a}}$. Then we have $c \cdot q \leq \operatorname{Opt}(\mathcal{I})$ by Lemma 2.3 (recall that q is the number of constraints in \mathcal{I}). Set $\alpha=\frac{\overline{a k}}{c}+1$. Note that we have $n \leq a q$ because the total length of constraint scopes in \mathcal{I} is at least n and at most $a q$. Since $n \leq a q \leq \frac{a O p t(\mathcal{I})}{c}$, we have

$$
\operatorname{Opt}\left(\mathcal{I}^{\prime}\right)=\operatorname{Opt}(\mathcal{I})+k n \leq \operatorname{Opt}(\mathcal{I})+k \frac{a \operatorname{Opt}(\mathcal{I})}{c}=\alpha \cdot \operatorname{Opt}(\mathcal{I})
$$

so the first property of an L-reduction is satisfied.
We will now show that the second property is satisfied with $\beta=1$. Let φ^{\prime} and φ be solutions to \mathcal{I}^{\prime} and \mathcal{I}, respectively, such as described above.

Let V_{1} be the set of variables which φ^{\prime} sends to $D \backslash D^{\prime}$, and V_{2} the variables sent to D^{\prime}; set $r=\left|V_{2}\right|$. Divide all constraints in \mathcal{I}^{\prime} into three pairwise disjoint groups: C_{1} consists of all constraints $f_{i}\left(\mathbf{x}_{i}\right)$ that contain at least one variable from V_{1}, C_{2} of all constraints $f_{i}\left(\mathbf{x}_{i}\right)$ that use variables only from V_{2}, and C_{3} contains the $k n$ constraints of the form $u_{D^{\prime}}\left(x_{i}\right)$. Let $q_{1}=\left|C_{1}\right|$. Furthermore, let s_{1} and s_{2} be the numbers of constraints in C_{1} and C_{2}, respectively, that are satisfied by φ^{\prime}. By the bounded occurrence property, we have $s_{1} \leq q_{1} \leq(n-r) k$. In particular, it follows that $s_{1}-n k+r k \leq 0$. Note also that $\operatorname{cost}\left(\varphi^{\prime}\right)=s_{1}+s_{2}+r k$ and $s_{2} \leq \operatorname{cost}(\varphi)$. Finally, we have

$$
\begin{aligned}
& \operatorname{Opt}(\mathcal{I})-\operatorname{cost}(\varphi) \leq \operatorname{Opt}(\mathcal{I})-s_{2}= \\
& \quad[\operatorname{Opt}(\mathcal{I})+n k]-\left[s_{1}+s_{2}+r k\right]+\left[s_{1}-n k+r k\right] \leq \operatorname{Opt}\left(\mathcal{I}^{\prime}\right)-\operatorname{cost}\left(\varphi^{\prime}\right)
\end{aligned}
$$

4. Supermodularity, Monge Properties, and MAX CSP

4.1. BASICS OF SUPERMODULARITY. In this section, we discuss the well-known combinatorial algebraic property of supermodularity [Topkis 1998] which will play a crucial role in classifying the approximability of MAX CSP problems.

A partial order on a set D is called a lattice order if, for every $x, y \in D$, there exists a greatest lower bound $x \sqcap y$ and a least upper bound $x \sqcup y$. The corresponding algebra $\mathcal{L}=(D, \sqcap, \sqcup)$ is called a lattice. For tuples $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ in D^{n}, let $\mathbf{a} \sqcap \mathbf{b}$ and $\mathbf{a} \sqcup \mathbf{b}$ denote the tuples $\left(a_{1} \sqcap b_{1}, \ldots, a_{n} \sqcap b_{n}\right),\left(a_{1} \sqcup b_{1}, \ldots, a_{n} \sqcup b_{n}\right)$, respectively.

Definition 4.1. Let \mathcal{L} be a lattice on D. A function $f: D^{n} \rightarrow \mathbb{Z}^{+}$is called supermodular on \mathcal{L} if

$$
f(\mathbf{a})+f(\mathbf{b}) \leq f(\mathbf{a} \sqcap \mathbf{b})+f(\mathbf{a} \sqcup \mathbf{b}) \text { for all } \mathbf{a}, \mathbf{b} \in D^{n}
$$

Note that predicates are functions, so it makes sense to consider supermodular predicates. We say that $\mathcal{F} \subseteq R_{D}$ is supermodular on \mathcal{L} if every $f \in \mathcal{F}$ has this property.

A finite lattice $\mathcal{L}=(D, \sqcap, \sqcup)$ is distributive if and only if it can be represented by subsets of a set A, where the operations \sqcap and \sqcup are interpreted as set-theoretic intersection and union, respectively. Totally ordered lattices, or chains, will be of special interest in this article. Note that, for chains, the operations \sqcap and \sqcup are simply min and max. Hence, the supermodularity property for an n-ary function f

FIg. 1. A list of predicates on $\{0,1,2,3\}$ that are supermodular on the chain $0<1<2<3$. The predicates are represented by tables of values.
on a chain is expressed as follows:

$$
\begin{aligned}
& f\left(a_{1}, \ldots, a_{n}\right)+f\left(b_{1}, \ldots, b_{n}\right) \\
& \quad \leq f\left(\min \left(a_{1}, b_{1}\right), \ldots, \min \left(a_{n}, b_{n}\right)\right)+f\left(\max \left(a_{1}, b_{1}\right), \ldots, \max \left(a_{1}, b_{1}\right)\right)
\end{aligned}
$$

for all $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$.
Example 4.2.
(1) The disequality predicate $n e q_{D}$ is not supermodular on any chain on D. Take two elements $d_{1}, d_{2} \in D$ such that $d_{1}<d_{2}$. Then

$$
n e q_{D}\left(d_{1}, d_{2}\right)+n e q_{D}\left(d_{2}, d_{1}\right)=2 \not \approx 0=n e q_{D}\left(d_{1}, d_{1}\right)+n e q_{D}\left(d_{2}, d_{2}\right) .
$$

(2) Fix a chain on D and let \mathbf{a}, \mathbf{b} be arbitrary elements of D^{2}. Consider the binary predicate $f_{\mathbf{a}}, f^{\mathbf{b}}$ and $f_{\mathbf{a}}^{\mathbf{b}}$ defined by the rules

$$
\begin{aligned}
f_{\mathbf{a}}(x, y) & =1 \Leftrightarrow(x, y) \leq \mathbf{a} \\
f^{\mathbf{b}}(x, y) & =1 \Leftrightarrow(x, y) \geq \mathbf{b}, \\
f_{\mathbf{a}}^{\mathbf{b}}(x, y) & =1 \Leftrightarrow(x, y) \leq \mathbf{a} \text { or }(x, y) \geq \mathbf{b}
\end{aligned}
$$

where the order on D^{2} is component-wise. It is easy to check that every predicate defined above in this part of the example is supermodular on the chain. Note that such predicates were considered in Cohen et al. [2005] where they were called generalized 2-monotone. We will see later in this subsection (Lemma 4.4) that such predicates are generic supermodular binary predicates on a chain.

We will now make some simple, but useful, observations.
ObSERVATION 4.3.
(1) Any chain is a distributive lattice.
(2) Any unary predicate on D is supermodular on any chain on D.
(3) A predicate is supermodular on a chain if and only if it is supermodular on its dual chain (obtained by reversing the order).
Given a chain in D, any binary function f on D can be represented as a $|D| \times|D|$ matrix M such that $M(x, y)=f(x, y)$; here, the chain indicates the order of indices of M, and $M(x, y)$ is the entry in row x and column y of M. Note that this matrix is essentially the table of values of the predicate. For example, some binary predicates on $D=\{0,1,2,3\}$ that are supermodular on the chain $0<1<2<3$ are listed in Figure 1 (these predicates will be used later in the proof of Theorem 6.3). Note that
all predicates in Figure 1 have the form described in Example 4.2(2). For example, h_{2} is $f_{(0,1)}^{(3,3)}$ and h_{17} is $f_{(2,1)}^{(1,3)}$.

A square matrix M is called anti-Monge (or a-Monge, for short) ${ }^{2}$ if $M(i, s)+$ $M(r, j) \leq M(i, j)+M(r, s)$ for all $i<r$ and $j<s$. It is well known (and easy to check) that matrices corresponding to binary supermodular functions on a chain are precisely the a-Monge matrices (see, e.g., Observation 6.1 in Burkard et al. [1996]). Hence, one can view the tables in Figure 1 as a-Monge matrices. We will be particularly interested in binary supermodular predicates on chains, and the next result describes the structure of 0-1 a-Monge square matrices.

In order to make the correspondence between matrices and binary functions more transparent, we will use the set $J=\{0, \ldots, n-1\}$ to number rows and columns of an $n \times n$ matrix. Let $L_{n}^{p q}$ denote the square 0-1 matrix of size n such that $L_{n}^{p q}(i, j)=1$ if and only if $i \leq p$ and $j \leq q$. Similarly, $R_{n}^{s t}$ denotes the square $0-1$ matrix of size n such that $R_{n}^{s t}(i, j)=1$ if and only if $i \geq s$ and $j \geq t$. Let U and W be two subsets of J. We denote by $M[U, W]$ the $|U| \times|W|$ submatrix of M that is obtained by deleting all rows not contained in U and all columns not in W. Expression $M[U, W]=a$ will mean that all elements in the submatrix are equal to a.

The following result is a direct corollary of Lemma 2.3 of Burkard et al. [1996].
LEMMA 4.4. A non-zero 0-1 matrix M of size $n \times n$ without all-ones rows and columns is an a-Monge matrix if and only if one of the following holds
$-M=L_{n}^{p q}$, for some $0 \leq p, q \leq n-2$, or
$-M=R^{\text {st }}$, for some $1 \leq s, t \leq n-1$, or
$-M=L_{n}^{p q}+R_{n}^{\text {st }}$ for some $0 \leq p, q \leq n-2$ and $1 \leq s, t \leq n-1$, with $p<s$, or $q<t$, or both.

The family of n-ary supermodular functions on a chain was also studied under the name of n-dimensional anti-Monge arrays [Burkard et al. 1996]. As a special case of Lemma 6.3 of Burkard et al. [1996], we have the following result (see also Observation 6.1 of Burkard et al. [1996]).

LEMMA 4.5. An n-ary, $n \geq 2$, function f is supermodular on a fixed chain if and only if the following holds: every binary function obtained from f by replacing any given $n-2$ variables by any constants is supermodular on this chain.
4.2. SUPERMODULARITY AND MAX CSP. The property of supermodularity has been used to classify the approximability of problems MAX $\operatorname{CSP}(\mathcal{F})$ for small sets D (though, originally the classification for the case $|D|=2$ was obtained and stated in Creignou [1995], Creignou et al. [2001], and Khanna et al. [2001] without using this property). To make use of results in Cohen et al. [2005] and Jonsson et al. [2006], we need to introduce some more notation.

Definition 4.6. An endomorphism of \mathcal{F} is a unary operation μ on D such that, for all $f \in \mathcal{F}$ and all $\left(a_{1}, \ldots, a_{m}\right) \in D^{m}$, we have

$$
f\left(a_{1}, \ldots, a_{m}\right)=1 \Rightarrow f\left(\mu\left(a_{1}\right), \ldots, \mu\left(a_{m}\right)\right)=1
$$

[^1]We will say that \mathcal{F} is a core if every endomorphism of \mathcal{F} is injective (i.e., a permutation).

If μ is an endomorphism of \mathcal{F} with a minimal image $\operatorname{im}(\mu)=D^{\prime}$, then a core of \mathcal{F}, denoted $\operatorname{core}(\mathcal{F})$, is the set $\left.\mathcal{F}\right|_{D^{\prime}}$.

The intuition here is that if \mathcal{F} is not a core then it has a non-injective endomorphism μ, which implies that, for every assignment φ, there is another assignment $\mu \varphi$ that satisfies all constraints satisfied by φ and uses only a restricted set of values, so the problem is equivalent to a problem over this smaller set. As in the case of graphs, all cores of \mathcal{F} are isomorphic, so one can speak about the core of \mathcal{F}. Note that any set of the form $\mathcal{F} \cup \mathcal{C}_{D}$ is a core.

Theorem 4.7 ([Cohen et al. 2005; Jonsson et al. 2006]). Let $|D| \leq 3$ and let $\mathcal{F} \subseteq R_{D}$ be a core. If \mathcal{F} is supermodular on some chain on D, then weighted $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ belongs to $\mathbf{P O}$. Otherwise, $\operatorname{Max} \operatorname{CSP}(\mathcal{F})$ is $\mathbf{A P X}$-complete.

Remark 4.8. It was shown in Lemma 5.37 of Creignou et al. [2001] that, for $D=\{0,1\}, \mathcal{F} \subseteq R_{\{0,1\}}$ can strictly implement neq $_{2}$ whenever $\operatorname{Max} \operatorname{CsP}(\mathcal{F})$ is APX-complete in the above theorem (i.e., whenever \mathcal{F} is a core that is not supermodular on any chain). Moreover, it follows from (the proof of) Theorem 3 of Jonsson et al. [2006] that if $|D|=3$ and \mathcal{F} is not supermodular on any chain on D then $\mathcal{F} \cup \mathcal{C}_{D}$ can express $n e q_{2}$ or $n e q_{3}$ by using a sequence of the following operations:
—adding to \mathcal{F} a predicate that can be strictly implemented from \mathcal{F}

- taking the core of a subset of \mathcal{F}.

It was shown in Alimonti and Kann [2000] that MAX CuT remains APX-complete even when restricted to cubic graphs. Since MAX Cut is the same problem as $\operatorname{Max} \operatorname{CSP}\left(\left\{\right.\right.$ neq $\left.\left._{2}\right\}\right)$ (see Example 2.5), it follows that Max $\operatorname{CSP}\left(\left\{n e q_{2}\right\}\right)-B$ is APX-complete. Moreover, since $n e q_{k}\left\{_{\{0,1\}}=n e q_{2}\right.$, it follows from Lemma 3.5 that $\operatorname{Max} \operatorname{CSP}\left(\left\{\right.\right.$ neq $\left.\left._{k}, u_{\{0,1\}}\right\}\right)-B$ is APX-complete for any k. Therefore, we obtain the following corollary by combining Remark 4.8 with Lemmas 3.4 and 3.5.

Corollary 4.9. Let $|D| \leq 3$ and \mathcal{F} not supermodular on any chain on D. Then the problem $\operatorname{Max} \operatorname{CSP}\left(\mathcal{F} \cup \mathcal{U}_{D}\right)-B$ is $\mathbf{A P X}$-complete.

The tractability part of our classification is contained in the following result:
Theorem 4.10 ([Cohen et al. 2005; Iwata et al. 2001; Schrijver 2000]). If \mathcal{F} is supermodular on some distributive lattice on D, then weighted $\operatorname{MAx} \operatorname{CSP}(\mathcal{F})$ is in $\mathbf{P O}$.

5. Permuted a-Monge Matrices

In this section, we prove results about a-Monge matrices that will imply, via the correspondence between binary supermodular predicates on chains and a-Monge matrices, the following result.

THEOREM 5.1. If \mathcal{F} is a set of binary predicates that is not supermodular on any chain on D, then there exist $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ with $\left|\mathcal{F}^{\prime}\right| \leq 3$ and $D^{\prime} \subseteq D$ with $\left|D^{\prime}\right| \leq 4$ such that $\left.\mathcal{F}^{\prime}\right|_{D^{\prime}}$ is not supermodular on any chain on D^{\prime}.

We prove this theorem in two steps: the existence of D^{\prime} is established in Section 5.1 (see Corollary 5.4) and the existence of \mathcal{F}^{\prime} in Section 5.2 (see Proposition 5.7). Our results about matrices will be more general than required to prove Theorem 5.1 because we will consider general (i.e., not necessarily $0-1$) matrices.

First, we need to introduce some concepts and notation. Let M be an $n \times n$ matrix. If there is a permutation π that simultaneously permutes rows and columns of M so that the resulting matrix is an a-Monge matrix, then the matrix M is called a permuted a-Monge matrix and the permutation is called an a-Monge permutation for M. Note that we will often use the term "permutation" as a synonym for "linear (re-)ordering". Given a set of indices $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq J=\{0, \ldots, n-1\}$, we use notation $M[I]$ for the sub-matrix $M[I, I]$. We say that $M[I]$ is permuted according to a permutation $\left\langle s_{1}, \ldots, s_{k}\right\rangle$, where $I=\left\{s_{1}, \ldots, s_{k}\right\}$, if row (column) s_{1} is the first row (column) in the permuted matrix, s_{2} is the second row (column), and so on. If $n \leq 4$ and M is not a permuted a-Monge matrix, then we say that M is a $b a d$ matrix.

A row i precedes a row j in $M(i \prec j$ for short), if row i occurs before row j in M. If i precedes j in a permutation π, then we write $i \prec_{\pi} j$. When the permutation π is understood from the context, we simply write $i \prec j$. If π is an a-Monge permutation for the matrix M, then the reverse of π, π^{-}defined as $\pi^{-}(i)=\pi(n-1-i)$, is also an a-Monge permutation. Therefore, given two indices i and j, we can always assume that i precedes j in an a-Monge permutation (if there is any).

Denote by $\Delta(i, j, k, l)$, for $i, j, k, l \in J$, an algebraic sum that involves four entries of the matrix $M: \Delta(i, j, k, l)=M(i, k)+M(j, l)-M(i, l)-M(j, k)$. Given a permutation π for permuting rows and columns in M, we use a similar notation for the sums in the permuted matrix: $\Delta(i, j, k, l, \pi)=M(\pi(i), \pi(k))+$ $M(\pi(j), \pi(l))-M(\pi(i), \pi(l))-M(\pi(j), \pi(k))$. For $k=i$ and $l=j$, we use simplified notation $\Delta(i, j)=\Delta(i, j, i, j)$, for $i, j \in J$. Matrix M is an a-Monge matrix if and only if $\Delta(i, j, k, l) \geq 0$ for all $i<j$ and $k<l$, and M is permuted a-Monge if and only if there exists a permutation π such that $\Delta(i, j, k, l, \pi) \geq 0$ for all $i<j$ and $k<l$. It is easy to check that

$$
\begin{equation*}
\Delta(i, j, k, l)=\sum_{s=i, . ., j-1 ; t=k, . ., l-1} \Delta(s, s+1, t, t+1) \tag{1}
\end{equation*}
$$

Therefore, given a permutation π and matrix M, it can be checked in $O\left(n^{2}\right)$ time whether π is an a-Monge permutation for the matrix M.

We will often use the following equalities (which are direct consequences of equation (1)):

$$
\begin{aligned}
& \Delta(i, j, k, l)=\Delta(i, s, k, l)+\Delta(s, j, k, l) \text { and } \\
& \Delta(i, j, k, l)=\Delta(i, j, k, s)+\Delta(i, j, s, l)
\end{aligned}
$$

We will say that row (column) s is equivalent to row (respectively, column) t, if $\Delta(s, t, k, l)=0$ (respectively, $\Delta(k, l, s, t)=0$) for all k, l. It can easily be shown that if rows s and t are equivalent, then $M(s, i)=M(t, i)+\alpha_{s t}$, for all i and some constant $\alpha_{s t}$. Hence, after subtracting $\alpha_{s t}$ from all elements in the row s $\left(M^{\prime}(s, i)=M(s, i)-\alpha_{s t}\right)$, one gets two identical rows s and $t\left(M^{\prime}(s, i)=M^{\prime}(t, i)\right.$ for all i). A matrix with all rows (and all columns) equivalent is called a sum matrix: It can be shown that in this case $M(s, t)=u_{s}+v_{t}$, for some real vectors u and v. Clearly, any sum matrix is a-Monge.

FIG. 2. Schematic representation of submatrices and algebraic sums Δ.
5.1. Reducing the Size of Matrices. We will first show that whenever an $n \times n$ matrix M is not a permuted a-Monge matrix, then there exists a set of indices B with $|B| \leq 4$ such that $M[B]$ is a bad matrix. Our approach to the recognition of bad matrices is loosely based on the COM (Construct partial Orders and Merge them) algorithm, suggested in Deineko et al. [1994]. This algorithm constitutes a general approach to deciding whether a given matrix, possibly with some unknown elements, can be permuted to avoid a special set of 2×2 submatrices. In our case, these are submatrices $M[\{i, j, k, l\}]$ with $\Delta(i, j, k, l)<0$.

We will use the idea of the COM algorithm, which goes as follows: given a matrix M, we try to construct an a-Monge permutation for it. We start with a pair of indices (i, j) which correspond to two non-equivalent rows or columns in the matrix. We assume further that the index i precedes index j in an a-Monge permutation π. The assumption $i \prec_{\pi} j$ determines the order of some other indices. Under the assumption that $i \prec_{\pi} j$, the strict inequality $\Delta(i, j, k, l)>0$ indicates that $k \prec_{\pi} l$, while the strict inequality $\Delta(i, j, k, l)<0$ indicates that $l \prec_{\pi} k$. (Note that $\Delta(i, j, k, l)=-\Delta(i, j, l, k)=-\Delta(j, i, k, l)=\Delta(j, i, l, k)-$ this property will often be used in our proofs). The obtained information can be conveniently represented as a directed graph P_{M} with nodes J and directed arcs corresponding to the identified precedence constraints together with the initial constraint $i \prec_{\pi} j$. We then extend P_{M} recursively to obtain additional information about the ordering of indices. Eventually, either P_{M} contains an oriented cycle which signals that the matrix is not a permuted a-Monge matrix, or we can view P_{M} as a partial order. This order defines a set of permutations (i.e., linear extensions of P_{M}) which are our candidates for an a-Monge permutation. We illustrate the COM approach with the following example.

Example 5.2. Consider a submatrix $M[\{i, k, j\}]$. Schematic representation of this submatrix and algebraic sums Δ is shown in Figure 2. We claim that, provided $\Delta(i, j)=\Delta(i, k)=\Delta(k, j)=0$, the submatrix is either a bad matrix or a sum matrix.

It follows from $\Delta(i, j)=\Delta(i, k)+\Delta(i, k, k, j)+\Delta(k, j, i, k)+\Delta(k, j)=$ 0 that $\Delta(k, j, i, k)=-\Delta(i, k, k, j)$. Suppose that $\Delta(k, j, i, k) \neq 0$ and $\Delta(i, k, k, j) \neq 0$. Without loss of generality, suppose that $i \prec k$ in an a-Monge permutation and that $\Delta(i, k, k, j)>0$. The assumption that row i precedes row k, together with the inequality $\Delta(i, k, k, j)>0$ yields $k \prec j$. The assumption that column i precedes column k together with the inequality $\Delta(k, j, i, k)<$ 0 yields a contradictory precedence $j \prec k$. Therefore, $M[\{i, j, k\}]$ is a bad matrix.

If $\Delta(k, j, i, k)=0$ and $\Delta(i, k, k, j)=0$, then it can easily be shown that $M[\{i, j, k\}]$ is a sum matrix.

We recommend the reader to use diagrams like the one in Figure 2 in the following proof, since they make arguments more transparent.

Theorem 5.3. If an $n \times n$ matrix M is not a permuted a-Monge matrix, then there exists a set of indices B with $|B| \leq 4$, such that $M[B]$ is a bad matrix.

Proof. We can without loss of generality assume that M has no pair s, t of indices such that both rows s, t are equivalent and columns s, t are equivalent. Indeed, if s, t is such a pair then it is easy to see that M is permuted a-Monge if and only if $M[J \backslash\{s\}]$ is permuted a-Monge, so we can delete row s and column s and continue.

First note that if there exists a pair i, j such that $i \neq j$ and $\Delta(i, j)<0$, then $M[\{i, j\}]$ is a bad matrix, so we assume further on that $\Delta(i, j) \geq 0$ for all distinct i, j.

Assume that $\Delta(i, j)=0$ for all i, j. Suppose that there exists a triple i, j, k such that $\Delta(k, j, i, k) \neq 0$ and/or $\Delta(i, k, k, j) \neq 0$. Then, as shown in the example above, $M[\{i, j, k\}]$ is a bad matrix in this case. Suppose instead that $\Delta(k, j, i, k)=0$ and $\Delta(i, k, k, j)=0$ for all i, k, j. For any s, t, k, l with $s, t<k, l$, we have $\Delta(s, t, k, l)=\Delta(s, t, t, l)-\Delta(s, t, t, k)$, and therefore $\Delta(s, t, k, l)=0$. For any s, t, k, l with $s, t>k, l$, we have $\Delta(s, t, k, l)=\Delta(s, t, k, s)-\Delta(s, t, l, s)$, and therefore $\Delta(s, t, k, l)=0$. It can be shown in a similar way that $\Delta(s, t, k, l)=0$ for all s, t, k, l, and therefore M is a sum matrix, which is impossible because M is not permuted a-Monge.

Assume now that $\max _{k, l} \Delta(k, l)>0$. We will try to construct an a-Monge permutation for M, and show that such an effort unavoidably results in the identification of a bad submatrix in M. If M were a permuted a-Monge matrix, then there would exist indices i^{\star}, j^{\star} and an (a-Monge) permutation π with $\pi\left(i^{\star}\right)=0$ and $\pi\left(j^{\star}\right)=n-1$ such that $\Delta\left(i^{\star}, j^{\star}\right)=\max _{k, l} \Delta(k, l)$ (see equation (1)), and also $\Delta\left(i^{\star}, j^{\star}, j, j+1, \pi\right) \geq 0$ and $\Delta\left(j, j+1, i^{\star}, j^{\star}, \pi\right) \geq 0$ for all $j=0,1, \ldots, n-2$. To simplify the presentation, we assume that $i^{\star}=0$ and $j^{\star}=n-1$ (otherwise, we renumber the rows and columns in the matrix). The above inequalities can be rewritten as $M(0, \pi(j))-M(n-1, \pi(j)) \geq M(0, \pi(j+1))-M(n-1, \pi(j+1))$ and $M(\pi(j), 0)-M(\pi(j), n-1) \geq M(\pi(j+1), 0)-M(\pi(j+1), n-1)$ for $j=0,1, \ldots, n-2$.

So, an a-Monge permutation π would sort the differences $(M(0, i)-M(n-1, i))$ and the differences $(M(i, 0)-M(i, n-1)), i \neq 0, n-1$ in nonincreasing order. If there exists no permutation that sorts both sequences, then there is a pair i, j such that $M(0, i)-M(n-1, i)<M(0, j)-M(n-1, j)$ (which yields the precedence constraint $i \prec j$) and $M(i, 0)-M(i, n-1)>M(j, 0)-M(j, n-1)$ (which yields the precedence constraint $j \prec i$). This implies that matrix $M[\{0, n-1, i, j\}]$ is a bad matrix.

Suppose now that $\Delta(0, n-1)=\max _{k, l} \Delta(k, l)$ and there exists a permutation π, with $\pi(0)=0$ and $\pi(n-1)=n-1$, that sorts both sequences. Fix such a permutation and permute M according to it. We can without loss of generality assume that M had this new form from the very beginning, that is, both the sequence $(M(0, i)-M(n-1, i))$ and the sequence $(M(i, 0)-M(i, n-1)), i \neq 0, n-1$, are already in nonincreasing order.

Since M is not permuted a-Monge, we still have indices p, q, s, t such that $p<q$, $s<t$, and $\Delta(p, q, s, t)<0$. It follows from the inequality $\Delta(p, q, s, t)<0$ and from Eq. (1) that there exists an index i with $p \leq i \leq q-1$, and an index k with $s \leq k \leq t-1$, such that $\Delta(i, i+1, k, k+1)<0$. We consider the case $i<k$: the case $i=k$ is already eliminated and the case $i>k$ is symmetric.

Assume that there exist indices i and k with $i+1<k$ satisfying the conditions $\Delta(i, i+1, k, k+1)<0, \Delta(i, i+1, i+1, k)>0$, and $\Delta(i+1, k, k, k+1)>0$. We claim that $M[\{i, i+1, k, k+1\}]$ is a bad matrix in this case. Indeed, the assumption $i \prec i+1$ yields $i+1 \prec k$ and $k+1 \prec k$, and constraint $k+1 \prec k$ for the columns k and $k+1$ yields $k \prec i+1$. This proves the claim.

Assume now that there is no pair of indices i, k with $i+1<k$ such that $\Delta(i, i+1, k, k+1)<0, \Delta(i, i+1, i+1, k)>0$, and $\Delta(i+1, k, k, k+1)>0$. We claim that then there exists a triple of indices i, j, l with $i<j<l$ such that $\Delta(i, j, j, l)<0$. Indeed, we know that we have a pair of indices i, k with $i<k$ such that $\Delta(i, i+1, k, k+1)<0$. If $i+1=k$, then our claim trivially holds with $j=k$ and $l=k+1$. Otherwise, we have $i+1<k$ with $\Delta(i, i+1, i+1, k) \leq 0$ or $\Delta(i+1, k, k, k+1) \leq 0$ (or both). If $\Delta(i, i+1, i+1, k) \leq 0$ then $\Delta(i, i+$ $1, i+1, k+1)=\Delta(i, i+1, i+1, k)+\Delta(i, i+1, k, k+1)<0$, so we can take $j=i+1$ and $l=k+1$ in our claim. The situation when $\Delta(i+1, k, k, k+1) \leq 0$ is treated similarly.

We consider two cases:
Case 1. There exists a triple $i<j<l$ with $\Delta(i, j, j, l)<0$ such that $i=0$ or $l=n-1$, or both.

We consider the case with $\Delta(0, j, j, l)<0$ (the case of $\Delta(i, j, j, n-1)<0$ is symmetric). We claim that matrix $M[\{0, j, l, n-1\}]$ is a bad matrix in this case. Indeed, rows and columns in the matrix are sorted to guarantee, in particular, the inequalities $\Delta(0, n-1, j, l) \geq 0$ and $\Delta(0, j, 0, n-1) \geq 0$. It follows from the assumption $\Delta(0, j, j, l)<0$ and the equality $\Delta(0, n-1, j, l)=$ $\Delta(0, j, j, l)+\Delta(j, n-1, j, l)$ that $\Delta(j, n-1, j, l)>0$. So, the assumption $0 \prec j$ yields $l \prec j$, and $l \prec j$ yields $n-1 \prec j$. We will show that then we have a contradiction with the choice of 0 and $n-1$ as a pair such that $\Delta(0, n-1)=\max _{k, l}$ $\Delta(k, l)$.

If $l=n-1$, then there are two permutations of $\{0, j, n-1\}$ compatible with the obtained precedence constraints: $\langle 0, n-1, j\rangle$ and $\langle n-1,0, j\rangle$. If $\langle 0, n-1, j\rangle$ is an aMonge permutation for $M[\{0, j, n-1\}]$ then $\Delta(0, j)$ can be represented as a sum of non-negative numbers (see equality (1)) which include, in particular, $\Delta(0, n-1)$ and $\Delta(n-1, j)>0$. This is a contradiction with the choice of 0 and $n-1$. If $\langle n-1,0, j\rangle$ is an a-Monge permutation for $M[\{0, j, n-1\}]$ then we get a contradiction in a similar way, using the fact that $\Delta(0, j)=\Delta(0, j, 0, n-1)-\Delta(0, j, j, n-1)$ >0.

Assume now $l \neq n-1$. This means that $\Delta(0, j, j, n-1) \geq 0$. Moreover, since $\Delta(0, j, j, l)<0$ and $\Delta(0, j, j, n-1)=\Delta(0, j, j, l)+\Delta(0, j, l, n-1)$, we also have $\Delta(0, j, l, n-1)>0$. In addition to the previously stated precedence constraints $0 \prec j, l \prec j$, and $n-1 \prec j$, the last inequality implies a new constraint $l \prec n-1$. So we have three possible permutations for permuting the submatrix $M[\{0, j, l, n-1\}]$ to an a-Monge matrix: $\langle 0, l, n-1, j\rangle,\langle l, 0, n-1, j\rangle$, and $\langle l, n-1,0, j\rangle$.

Assume that $\langle 0, l, n-1, j\rangle$ is an a-Monge permutation. Then, by Eq. (1), we have

$$
\begin{aligned}
\Delta(0, j)= & \Delta(0, n-1)+\Delta(n-1, j, l, j)+\Delta(n-1, j, 0, l) \\
& +\Delta(0, n-1, n-1, j)
\end{aligned}
$$

Since the permutation is a-Monge, all numbers in the right-hand side of the above equality are non-negative. Also, we have $\Delta(n-1, j, l, j)=\Delta(j, n-1, j, l)>0$. This implies that $\Delta(0, j)>\Delta(0, n-1)$, which is a contradiction with the choice of 0 and $n-1$.

Similarly, if $\langle l, 0, n-1, j\rangle$ is an a-Monge permutation, then there is a representation of $\Delta(l, j)$ as a sum of non-negative numbers which again include $\Delta(0, n-1)$ and $\Delta(n-1, j, l, j)>0$. If $\langle l, n-1,0, j\rangle$ is an a-Monge permutation, then there is a representation of $\Delta(l, j)$ which contains $\Delta(0, n-1)$ and $\Delta(0, j, l, n-1)>0$.

Case 2. For any triple $i, j, l, i<j<l$, with $\Delta(i, j, j, l)<0$, neither $i=0$ nor $l=n-1$.

It is easy to see that this condition implies the following inequalities:

$$
\begin{aligned}
& \Delta(0, i, j, l)>0 \text { because, otherwise, } \Delta(0, j, j, l)= \\
& \quad \Delta(0, i, j, l)+\Delta(i, j, j, l)<0 ; \\
& \Delta(i, j, l, n-1)>0, \text { since else } \Delta(i, j, j, n-1)= \\
& \Delta(i, j, j, l)+\Delta(i, j, l, n-1)<0 ; \\
& \Delta(j, l, l, n-1) \geq 0 ; \\
& \Delta(0, i, i, j) \geq 0 .
\end{aligned}
$$

We claim that, given the above inequalities, at least one of $M[\{0, i, j, l\}]$ and $M[\{i, j, l, n-1\}]$ is a bad matrix.

We show first that if $\Delta(j, l)=0$, then $M[\{0, i, j, l\}]$ is the bad matrix. Indeed, when trying to find an a-Monge permutation for this matrix, the assumption $0 \prec i$ yields $j \prec l($ since $\Delta(0, i, j, l)>0)$ and $i \prec l($ since $\Delta(0, i, i, l)=$ $\Delta(0, i, i, j)+\Delta(0, i, j, l)>0)$. The constraint $j \prec l$ for the columns yields the constraint $j \prec i$, and, since $\Delta(i, l, j, l)=\Delta(i, j, j, l)+\Delta(j, l)=\Delta(i, j, j, l)<0$, it also yields $l \prec i$. The contradictory precedence constraints $\{l \prec i, i \prec l\}$ prove that $M[\{0, i, j, l\}]$ is a bad matrix. So, we assume now that $\Delta(j, l)>0$ (the case $\Delta(j, l)<0$ is already eliminated).

By using a similar argument for the matrix $M[\{i, j, l, n-1\}]$, we see that that if $\Delta(i, j)=0$, then this matrix is bad. So we will also assume that $\Delta(i, j)>0$.

We now consider the submatrix $M[\{0, i, j, l\}]$ and will try to permute it into an aMonge matrix. The assumption $0 \prec i$ yields $j \prec l, i \prec l, j \prec i$. Since $\Delta(i, j)>0$, and so $\Delta(0, j, i, j)=\Delta(0, i, i, j)+\Delta(i, j, i, j)>0$, we also have $j \prec 0$. This shows that a permutation other than $\langle j, 0, i, l\rangle$ cannot be an a-Monge permutation for $M[\{0, i, j, l\}]$. By analyzing the matrix $M[\{i, j, l, n-1\}]$ in a similar way, we see that the only potential a-Monge permutation for it is the permutation $\langle i, l, n-1, j\rangle$.

If $\langle j, 0, i, l\rangle$ is an a-Monge permutation for $M[\{0, i, j, l\}]$ then we must have $\Delta(0, i, j, 0) \geq 0$. Since $\Delta(0, i, i, j) \geq 0$ by the assumption of Case 2 , and also $\Delta(0, i) \geq 0$, we have $\Delta(0, i, 0, j)=\Delta(0, i, 0, i)+\Delta(0, i, i, j) \geq 0$. However, $\Delta(0, i, 0, j)=-\Delta(0, i, j, 0)$, which implies that $\Delta(0, i)=0$ and $\Delta(0, i, i, j)=0$.

Moreover, if $\langle j, 0, i, l\rangle$ is an a-Monge permutation for $M[\{0, i, j, l\}]$ then we have $\Delta(j, i, i, l) \geq 0$, and if $\langle i, l, n-1, j\rangle$ is an a-Monge permutation for $M[\{i, j, l, n-$ $1\}]$ then $\Delta(i, j, i, l) \geq 0$. But $\Delta(j, i, i, l)=-\Delta(i, j, i, l)$, so both are equal to 0 .

If $\langle j, 0, i, l\rangle$ is an a-Monge permutation for $M[\{0, i, j, l\}]$ then we must have $\Delta(j, 0, i, l) \geq 0$. We can express $\Delta(j, 0, i, l)$ as $\Delta(j, 0, i, l)=-\Delta(0, j, i, l)=$ $-(\Delta(0, i, i, j)+\Delta(0, i, j, l)+\Delta(i, j)+\Delta(i, j, j, l))$. Since $\Delta(0, i, i, j)=0$ and $\Delta(i, j)+\Delta(i, j, j, l)=\Delta(i, j, i, l)=0$, we get $\Delta(0, i, j, l)=-\Delta(j, 0, i, l) \leq 0$. However, the inequality $\Delta(0, i, j, l)>0$ is one of the four inequalities (see above) directly implied by the assumption of Case 2 . Hence, we get a contradiction which proves that at least one of the matrices $M[\{0, i, j, l\}]$ and $M[\{i, j, l, n-1\}]$ is a bad matrix.

This completes the proof of the theorem.

Note that the bound $|B| \leq 4$ in the above theorem is tight. Indeed, it can be straightforwardly checked that the following matrix is not permuted a-Monge, while any matrix obtained from it by deleting a row and a column (with the same index) is permuted a-Monge.

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

We can now generalize Theorem 5.3 to the case of several matrices.

COROLLARY 5.4. Let M_{1}, \ldots, M_{m} be $n \times n$ matrices. If there exists no permutation that simultaneously permutes all these matrices into a-Monge matrices, then there exists a subset of indices B with $|B| \leq 4$, such that no permutation of the indices in B simultaneously permutes matrices $M_{1}[B], \ldots, M_{m}[B]$ into a-Monge matrices.

Proof. Consider the matrix $M=\sum_{i=1}^{m} M_{i}$. If M is not a permuted a-Monge matrix then, by Theorem 5.3, there exists a subset of indices B with $|B| \leq 4$, such that $M[B]$ is a bad matrix. Consider matrices $M_{1}[B], \ldots, M_{m}[B]$. If there existed a permutation that permutes all these matrices into a-Monge matrices, then the sum of the permuted matrices, which is $M[B]$, would be a permuted a-Monge matrix as well. This contradiction proves that there exists no permutation that simultaneously permutes matrices $M_{1}[B], \ldots, M_{m}[B]$ into a-Monge matrices.

Assume now that M is a permuted a-Monge matrix. The corresponding a-Monge permutation does not permute all of M_{1}, \ldots, M_{m} into a-Monge matrices. Hence, there exist indices i, j, k, l and a pair of matrices, say, M_{1} and M_{2} such that $M_{1}(i, k)+M_{1}(j, l)-M_{1}(i, l)-M_{1}(j, k)>0$ and $M_{2}(i, k)+M_{2}(j, l)-M_{2}(i, l)-$ $M_{2}(j, k)<0$. This implies that the matrices $M_{1}[\{i, j, k, l\}]$ and $M_{2}[\{i, j, k, l\}]$ cannot be simultaneously permuted into a-Monge matrices - this follows from the fact that the assumption $i \prec j$ implies $k \prec l$ for M_{1} and $l \prec k$ for M_{2}.
5.2. Reducing the Number of Matrices. We will now prove the bound $\left|\mathcal{F}^{\prime}\right| \leq 3$ in Theorem 5.1, again via a-Monge matrices. In the proof, we will use special partial orders which we call multipartite partial orders.

We say that a partial order \preceq on a set D is multipartite if and only if there is a partition of $D=D_{1} \cup \cdots \cup D_{t}, t \geq 2$, such that $d \preceq d^{\prime}$ if and only if $d=d^{\prime}$ or else $d \in D_{i}$ and $d^{\prime} \in D_{j}$ for some $1 \leq i<j \leq t$. If P is a multipartite order, then we will call the classes D_{1}, \ldots, D_{t} the corresponding partition classes of P.

It is clear that if π is an a-Monge permutation for a matrix M then the reverse permutation π^{-}is also an a-Monge permutation for M. It is also clear that if M is an a-Monge matrix with at least three rows, and the matrix obtained from M by simultaneously swapping rows s and t and columns s and t is again a-Monge then rows s and t are equivalent, that is, $M(s, i)=M(t, i)+\alpha_{s t}$, and columns s and t are equivalent as well. Note that swapping of equivalent rows and columns does not affect the property of being a-Monge. A matrix M is called Monge if $-M$ is a-Monge. It is shown in Observation 3.6 of Rudolf [1994] that if M is Monge, $i \prec j \prec k$ in M, and rows (columns) i, k are equivalent in M then row j is equivalent to these rows (columns). Clearly, the statement is also true for a-Monge matrices. Theorem 3.9 of Rudolf [1994] states that if a Monge matrix has no equivalent rows or columns then the only way to permute it to a Monge matrix is by using either the identity permutation $i d$ or its reverse $i d^{-}$.

This leads to the following characterization of a-Monge permutations in terms of multipartite orders. For every anti-Monge square matrix M, there exist two mutually reverse multipartite orders such that a permutation (i.e., ordering) of the indices of M is an a-Monge permutation if and only if this ordering is an extension of one of the two multipartite orders. Two indices i, j belong to the same partition class of such a multipartite order if and only if both rows i, j and columns i, j are equivalent in M.

We will now prove two auxiliary lemmas about multipartite orders.
LEMMA 5.5. For any two multipartite orders P^{\prime} and $P^{\prime \prime}$ on D, there are $a, b \in$ D such that a and b are comparable (not necessarily in the same direction) both in P^{\prime} and in $P^{\prime \prime}$.

Proof. Take a maximal chain in P^{\prime}. If it is not entirely contained in a class of $P^{\prime \prime}$ then there are two elements in this chain belonging to two different classes of $P^{\prime \prime}$, that is, these elements are comparable both in $P^{\prime \prime}$ and in P^{\prime}. If all elements in the maximal chain are contained in the same class of $P^{\prime \prime}$, then pick any element d in a different class of $P^{\prime \prime}$. This element is comparable, in $P^{\prime \prime}$, with all elements from the chain, and, clearly, it is comparable with at least one of these elements in P^{\prime}.

Let us say that a collection $\mathcal{P}=\left\{P_{1}, \ldots, P_{l}\right\}$ of multipartite orders is conflicting if their union (considered as a digraph $G_{\mathcal{P}}$) contains a directed cycle.

Lemma 5.6. If a collection $\mathcal{P}=\left\{P_{1}, \ldots, P_{l}\right\}$ is conflicting, then the digraph $G_{\mathcal{P}}$ contains arcs (a, b) and (b, a) for some distinct a, b.

Proof. Let $a_{1}, \ldots, a_{t}, a_{1}$ be a shortest directed cycle in $G_{\mathcal{P}}$, and assume, for contradiction, that $t>2$. Without loss of generality, let $\left(a_{1}, a_{2}\right) \in P_{1}$. In this case, $\left(a_{2}, a_{3}\right) \notin P_{1}$, since, otherwise, we would have $\left(a_{1}, a_{3}\right) \in P_{1}$ and get a shorter cycle. Without loss of generality, assume that $\left(a_{2}, a_{3}\right) \in P_{2}$. Since the order P_{1} is multipartite, we conclude that a_{1} and a_{3} are comparable in P_{1}. Furthermore, since we cannot have $\left(a_{1}, a_{3}\right) \in P_{1}$, we have $\left(a_{3}, a_{1}\right) \in P_{1}$. Since $\left(a_{1}, a_{2}\right) \in P_{1}$, the
transitivity of P_{1} implies that $\left(a_{3}, a_{2}\right) \in P_{1}$, which, together with $\left(a_{2}, a_{3}\right) \in P_{2}$, gives us the required arcs.

PROPOSITION 5.7. Let $U=\left\{M_{1}, \ldots, M_{m}\right\}$ be a set of matrices of size $n \times n$ such that no permutation is an a-Monge permutation for all matrices in U. Then, there is a subset $U^{\prime} \subseteq U$ such that $\left|U^{\prime}\right| \leq 3$ and no permutation is an a-Monge permutation for all matrices in U^{\prime}.

Proof. We may assume that every matrix in U is a permuted a-Monge matrix, since, otherwise, the result follows immediately. Start with matrix $M_{1} \in U$ and choose any of the two multipartite orders that describe the set of corresponding a-Monge permutations for M_{1}. Call this order P_{1}. By Lemma 5.5 , there is a pair $(a, b) \in P_{1}$ such that $a \neq b$ and a and b are comparable in P_{2}, where P_{2} is the multipartite order for M_{2}. We may assume that $(a, b) \in P_{2}$, since, otherwise, the other multipartite order for P_{2} would be chosen.

If there is a pair of distinct elements (c, d) such that $(c, d) \in P_{1}$ and $(d, c) \in P_{2}$, then there exists no a-Monge permutation for M_{1} and M_{2} and the proposition is proved. So we may assume that $\left\{P_{1}, P_{2}\right\}$ is not conflicting. Since P_{1} shares a pair of comparable elements with any multipartite order, we can in the same way choose a multipartite order P_{i} for each matrix M_{i}. If, for some i, the pair $\left\{P_{1}, P_{i}\right\}$ is conflicting, then the proposition is proved. So assume that all such pairs of orders are non-conflicting. Note that if we chose the other multipartite order for M_{1}, this would have led to choosing the other multipartite orders for all M_{1}, \ldots, M_{m}.

Since there is no common a-Monge permutation for all of M_{1}, \ldots, M_{m}, we know that the collection $\left\{P_{1}, \ldots, P_{m}\right\}$ of orders that we have constructed is conflicting. By Lemma 5.6, there are orders P_{i} and P_{j} such that, for some distinct e, f, we have $(e, f) \in P_{i}$ and $(f, e) \in P_{j}$. Since both P_{i} and P_{j} share with P_{1} some pairs of elements comparable in the same direction, we conclude that there is no common a-Monge permutation for M_{1}, M_{i}, M_{j}. This completes the proof.

Note that the bound $\left|U^{\prime}\right| \leq 3$ in the above proposition is tight. Indeed, each of the following three matrices is permuted a-Monge, every two of them have a common a-Monge permutation, but there is no common a-Monge permutation for all three of them

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

6. Main Result

We will need the following two technical lemmas. They will be used in our hardness proof to reduce the argument to the case when all nonunary predicates are binary and their matrices do not contain all-ones rows or columns.

Lemma 6.1. If \mathcal{F} is not supermodular on any chain on D, then $\mathcal{F} \cup \mathcal{U}_{D}$ can strictly implement a collection \mathcal{F}^{\prime} of binary predicates that is is not supermodular on any chain on D.

Proof. Let $f \in \mathcal{F}$ be not supermodular on some fixed chain. By Observation 4.3(2), f is n-ary with $n \geq 2$. By Lemma 4.5 , it is possible to substitute
constants for some $n-2$ variables of f to obtain a binary predicate f^{\prime} which is not supermodular on this chain. Assume without loss of generality that these variables are the last $n-2$ variables, and the corresponding constants are d_{3}, \ldots, d_{n}, that is, $f^{\prime}(x, y)=f\left(x, y, d_{3}, \ldots, d_{n}\right)$. Then the following is a strict $(n-1)$-implementation of f^{\prime} :

$$
f^{\prime}(x, y)+(n-2)=\max _{z_{3}, \ldots, z_{n}}\left[f\left(x, y, z_{3}, \ldots, z_{n}\right)+u_{\left\{d_{3}\right\}}\left(z_{3}\right)+\cdots+u_{\left\{d_{n}\right\}}\left(z_{n}\right)\right] .
$$

Repeating this for all chains on D, one can strictly implement a collection \mathcal{F}^{\prime} of binary predicates that is not supermodular on any chain.

Lemma 6.2 (Lemma 3.3 [Jonsson et al. 2006]). Assume that $h \in R_{D}^{(2)}$ and there is $a \in D$ such that $h(x, a)=1$ for all $x \in D$. Let $h^{\prime}(x, y)=0$ if $y=a$ and $h^{\prime}(x, y)=h(x, y)$ if $y \neq a$. Then, the following holds:
(1) for any chain on D, h and h^{\prime} are supermodular (or not supermodular) on the chain simultaneously;
(2) the problems $\operatorname{MAx} \operatorname{CSP}\left(\{h\} \cup \mathcal{U}_{D}\right)$ and $\operatorname{Max} \operatorname{CSP}\left(\left\{h^{\prime}\right\} \cup \mathcal{U}_{D}\right)$ are $A P$-reducible to each other.

Recall that all predicates from \mathcal{C}_{D} are supermodular on any chain on D. Moreover, it is shown in (the proof of) Lemma 5.1 of Cohen et al. [2005] that all predicates from \mathcal{C}_{D} are supermodular on a lattice if and only if the lattice is a chain.

We will now prove our main result:
Theorem 6.3. If \mathcal{F} is supermodular on some chain on D, then the weighted problem $\operatorname{MAx} \operatorname{CSP}\left(\mathcal{F} \cup \mathcal{C}_{D}\right)$ belongs to $\mathbf{P O}$. Otherwise, $\operatorname{Max} \operatorname{CSP}\left(\mathcal{F} \cup \mathcal{C}_{D}\right)-B$ is APX-complete.

Proof. The tractability part of the proof follows immediately from Theorem 4.10 (see also Observation 4.3(1)). By Lemmas 3.2 and 3.4, it is sufficient to prove the hardness part for sets of the form $\mathcal{F} \cup \mathcal{U}_{D}$. We will show that $\left\{n e q_{2}\right\}$ can be obtained from $\mathcal{F} \cup \mathcal{U}_{D}$ by using the following two operations:
(1) replacing $\mathcal{F} \cup \mathcal{U}_{D}$ by a subset of $\mathcal{F} \cup \mathcal{U}_{D} \cup\{f\}$ where f is a predicate that can be strictly implemented from $\mathcal{F} \cup \mathcal{U}_{D}$;
(2) replacing $\mathcal{F} \cup \mathcal{U}_{D}$ by a subset of $\left.\mathcal{F}\right|_{D^{\prime}} \cup \mathcal{U}_{D^{\prime}}$ for some D^{\prime}.

By Example 2.5 and Lemmas 3.4 and 3.5, this will establish the result.
It follows from Lemmas 6.1 and 3.4 that it is sufficient to prove the hardness part of Theorem 6.3 assuming that \mathcal{F} contains only binary predicates. Now, Theorem 5.1 and Lemma 3.5 imply that, in addition, we can assume that $|\mathcal{F}| \leq 3$ and $|D| \leq 4$. Note that the case $|D| \leq 3$ is already considered in Corollary 4.9 (see also Remark 4.8), so it remains to consider the case $|D|=4$; we can without loss of generality assume in the rest of the proof that $D=\{0,1,2,3\}$. Moreover, due to Lemma 3.5 , we may consider only sets \mathcal{F} satisfying the following condition:
for any proper subset $D^{\prime} \subset D,\left.\mathcal{F}\right|_{D^{\prime}}$ is supermodular on some chain on D^{\prime}.
We can assume that \mathcal{F} is minimal with respect to inclusion, that is, every proper nonempty subset of \mathcal{F} is supermodular on some chain on D. We will consider three cases depending on the number of predicates in \mathcal{F}. Note that, by Lemma 6.2, we

FIg. 3. The optimized list of 27 predicates from the proof of Case 1 . The predicates are represented by tables of values.
can without loss of generality assume that none of the predicates in \mathcal{F} has a matrix containing an all-ones row or column (this property does not depend on the order of indices in the matrix).

We prove the result by using a simple computer-generated enumeration in each of the three cases. In each case, we first produce a list of all possible sets \mathcal{F} with the above restrictions, then reduce the list by using some obvious symmetries (such as isomorphism and anti-isomorphism), and, finally, for each remaining set \mathcal{F}, provide a strict implementation of a set \mathcal{F}^{\prime} that is known to have an APX-hard Max $\operatorname{CSP}\left(\mathcal{F}^{\prime}\right)$ problem. To compactly describe such symmetries, we introduce some notation. Let π be a permutation on D and f a binary predicate on D. Then, we define $\pi(f)$ to be the predicate such that $\pi(f)(a, b)=1$ if and only if $f(\pi(a), \pi(b))=1$ for all $a, b \in D$; we say that the predicate $\pi(f)$ is isomorphic to f. We also define the predicate f^{t} so that $f^{t}(a, b)=1$ if and only if $f(b, a)=1$ for all $a, b \in D$ (this corresponds to transposing the matrix of f). We say that a predicate of the form $\pi\left(f^{t}\right)$ is anti-isomorphic to f.

Case $1 .|\mathcal{F}|=1$. First, we use exhaustive search to generate the list of all binary predicates f on D that (a) do not have all-ones rows or columns, (b) are not supermodular on any chain on D, and (c) $\mathcal{F}=\{f\}$ satisfies condition (*). Moreover, we may consider predicates only up to isomorphism and anti-isomorphism. Thus, this list is then processed as follows: for every predicate f in the list, in order, remove all predicates below f in the list that are isomorphic or anti-isomorphic to f.

Clearly, it is sufficient to prove the hardness result for all predicates that remain in the optimized list. Since there are only $2^{16}=65536$ predicates to check, it is clear that generating and optimizing the list can easily be (and actually was) performed by a computer. The optimized list contains only 27 predicates which are given in Figure 3.

We show, starting from h_{1}^{\prime} and proceeding in order, that $\left\{h_{i}^{\prime}\right\} \cup \mathcal{U}_{D}$ strictly implements some binary predicate g such that either, for some $D^{\prime} \subset D$, the predicate $\left.g\right|_{D^{\prime}}$ is not supermodular on any chain on D^{\prime} or g is equal to h_{j}^{\prime} for some $j<i$ (up to isomorphism and anti-isomorphism). These implementations can be found in Appendix A. This, together with Remark 4.8, implies that $n e q_{2}$ can be obtained from $\mathcal{F} \cup \mathcal{U}_{D}$.

Case 2. $|\mathcal{F}|=$ 2. Let $\mathcal{F}=\left\{f_{1}, f_{2}\right\}$. As in Case 1, we use exhaustive search to generate the list of all pairs of binary predicates on D such that (a) they do not have all-ones rows or columns, (b) each of the two predicates is supermodular on
at least one chain, but there is no chain on which they are both supermodular, and (c) \mathcal{F} satisfies condition $(*)$. Without loss of generality, we can assume that f_{1} is supermodular on the chain $0<1<2<3$, that is, the matrix of f_{1} with this order of indices is a-Monge. Since the matrix of f_{1} does not have all-ones row or column, its structure is described in Lemma 4.4. Similarly, the matrix of f_{2} is a permuted a-Monge matrix, since $\pi\left(f_{2}\right)$ is supermodular for some permutation π.

We can also assume that the a-Monge matrices for f_{1} and f_{2} (with respect to the orders on which the predicates are supermodular) have the third form $\left(L_{4}^{p q}+R_{4}^{s t}\right)$ from Lemma 4.4. The reason is that if, say, the matrix of f_{1} has the form $L_{4}^{p q}$ for some $0 \leq p, q \leq 2$, then $f_{1}^{\prime}(x, y)+1=f_{1}(x, y)+u_{\{p+1, \ldots, 3\}}(x)+u_{\{q+1, \ldots, 3\}}(y)$ is a strict 2-implementation of the predicate f^{\prime} whose matrix is $R_{4}^{(p+1)(q+1)}$. Moreover, $f_{1}^{\prime \prime}(x, y)=f_{1}(x, y)+f_{1}^{\prime}(x, y)$ is a strict 1-implementation of a predicate whose matrix is $L_{4}^{p q}+R_{4}^{(p+1)(q+1)}$. Hence, we can replace f_{1} by $f_{1}^{\prime \prime}$ in this pair, and show the hardness result for $\left\{f_{1}^{\prime \prime}, f_{2}\right\}$.

It is clear that if we prove the result for all pairs $\left(f_{1}, f_{2}\right)$ with some fixed f_{1}, then this also proves the result for all pairs with the first component f_{1}^{t}, or $\pi\left(f_{1}\right)$, or $\pi\left(f_{1}^{t}\right)$ where $\pi(x)=3-x$. This implies that it is sufficient to consider only predicates from Figure 1 as possible candidates for f_{1}. Moreover, it can be straightforwardly checked by using a computer that if f_{1} is one of the predicates $h_{1}, h_{3}, h_{4}, h_{6}, h_{7}, h_{9}, h_{10}$ from Figure 1, then $\mathcal{F}=\left\{f_{1}, f_{2}\right\}$ fails to satisfy condition (*). Hence, all pairs (f_{1}, f_{2}), where at least one of f_{1} and $\pi\left(f_{2}\right)$ (for some permutation π) coincides with one of 7 predicates above, will not be on the list of pairs that we need to consider.

Obviously, if we prove the result for some pair $\left(f_{1}, f_{2}\right)$, then this also proves the result for $\left(f_{1}, f_{2}^{t}\right)$. Hence, provided $f_{2} \neq f_{2}^{t}$, one of these two pairs can be excluded from the list.

Now we show that predicates h_{5}, h_{11}, h_{12}, and h_{17} from Figure 1 can also be excluded from consideration because they can strictly implement some other predicates from Figure 1. Implementations:

$$
\begin{aligned}
& \left\{f:=\begin{array}{c}
1100 \\
1101 \\
1101 \\
0001
\end{array}\right\} \cup \mathcal{U}_{D} \stackrel{s}{\Longrightarrow}{ }_{6} \begin{array}{l}
1100 \\
0001 \\
0001 \\
0001
\end{array}=: g \quad f=h_{17}, g=\pi\left(h_{8}\right) \text { where } \pi(x)=3-x \\
& g(x, y)+5=\max _{z, w}\left[f(z, w)+f(z, y)+f(x, z)+f(x, w)+u_{\{0,3\}}(z)+\right. \\
& \left.u_{\{3\}}(w)+u_{\{0\}}(x)\right]
\end{aligned}
$$

$$
\left\{\begin{array}{c}
1110 \\
\left.f:=\begin{array}{l}
1110 \\
0001 \\
0001
\end{array}\right\} \cup \mathcal{U}_{D} \stackrel{s}{\Longrightarrow} \begin{array}{c}
1110 \\
1110 \\
0000 \\
0001
\end{array}=: g \quad f=h_{11}, g=h_{5} \\
g(x, y)+2=\max _{z}[f(z, x)+f(z, y)+f(x, z)]
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
1110 \\
\left.f:=\begin{array}{l}
1110 \\
0000 \\
0001
\end{array}\right\} \cup \mathcal{U}_{D} \stackrel{s}{\Longrightarrow} \begin{array}{c}
1100 \\
1100 \\
1101 \\
0001
\end{array}=: g \quad f=h_{5}, g=h_{16} \\
g(x, y)+1=\max _{z}\left[f(x, z)+f(y, z)+u_{\{2\}}(x)\right]
\end{array}\right.
$$

As above, all pairs $\left(f_{1}, f_{2}\right)$ such that, for some permutation $\pi, \pi\left(f_{2}\right)$ or $\pi\left(f_{2}^{t}\right)$ is one of $h_{5}, h_{11}, h_{12}, h_{17}$, can also be excluded from the list.

Finally, we can exclude from the list all pairs isomorphic to some pair higher up in the list. That is, we exclude pair $\left(f_{1}, f_{2}\right)$ if there is a permutation π such that either $\pi\left(f_{1}\right)=f_{1}$ and the pair $\left(f_{1}, \pi\left(f_{2}\right)\right)$ is above $\left(f_{1}, f_{2}\right)$ in the list or if there is a permutation π such that the pair $\left(\pi\left(f_{2}\right), \pi\left(f_{1}\right)\right)$ is above $\left(f_{1}, f_{2}\right)$ in the list (in the latter case, $\pi\left(f_{2}\right)$ must be supermodular on $0<1<2$ <3).
The optimized list now contains 27 pairs of predicates. In Appendix B, we provide strict implementations for them that show that, for each pair $\left(f_{1}, f_{2}\right)$ in this list, $\left\{f_{1}, f_{2}\right\} \cup \mathcal{U}_{D}$ implements either a pair above it in the list or else a binary predicate g such that, for some $D^{\prime} \subset D$, the predicate $\left.g\right|_{D^{\prime}}$ is not supermodular on any chain on D^{\prime}. As in Case 1, it follows that $n e q_{2}$ can be obtained from $\mathcal{F} \cup$ \mathcal{U}_{D}.

Case 3. $|\mathcal{F}|=3$. It can be checked by computer-assisted exhaustive search that there does not exist such a set \mathcal{F}. Simply loop through all triples of (not necessarily distinct) binary predicates on $\{0,1,2\}$ that are supermodular on the chain $0<1<2$ and check that each possible extension to a triple of pairwise distinct predicates on D results in a set \mathcal{F} satisfying one of the following conditions:
(1) \mathcal{F} is supermodular on some chain on D,
(2) for some $D^{\prime} \subset D,\left.\mathcal{F}\right|_{D^{\prime}}$ is not supermodular on any chain on D^{\prime},
(3) some proper subset of \mathcal{F} is not supermodular on any chain on D.

Remark 6.4. There are two main ways to represent a predicate: by its complete table of values and by the set of tuples which satisfy the predicate. By using Lemma 4.5 and Corollary 5.4, it is not hard to show that if the former representation is used or if D is fixed, then it can be checked in polynomial time whether a given
(finite) \mathcal{F} is supermodular on some chain on D. However, if D is not fixed and the latter representation is used then it is an open question whether there exists a polynomial-time algorithm for checking supermodularity of \mathcal{F} on some chain on D.

7. Application to LIST H-coloring Optimization

Recall that a homomorphism from a digraph $G=\left(V_{G}, A_{G}\right)$ to a digraph $H=\left(V_{H}, A_{H}\right)$ is a mapping $\varphi: V_{G} \rightarrow V_{H}$ such that $(\varphi(v), \varphi(w)) \in A_{H}$ whenever $(v, w) \in A_{G}$. In this case, the digraph G is said to be H colorable. The Graph H-colorability problem is, given a digraph G, to decide whether it is H-colorable. This problem attracts much attention in graph theory [Hell and Nešetřil 2004].

In this section, we consider the case when \mathcal{F} consists of a single binary predicate h. This predicate specifies a digraph H such that $V_{H}=D$ and (u, v) is an arc in H if and only if $h(u, v)=1$. Any instance $\mathcal{I}=(V, C)$ of $\operatorname{CSP}(\{h\})$ can be associated with a digraph $G_{\mathcal{I}}$ whose nodes are the variables in V and whose arcs are the scopes of constraints in C. It is not difficult to see that the question whether all constraints in \mathcal{I} are simultaneously satisfiable is equivalent to the question whether $G_{\mathcal{I}}$ is H-colorable. Therefore, the problem $\operatorname{CSP}(\{h\})$ is precisely the GRAPH H-COLORABILITY problem for the digraph H. The problems $\operatorname{CSP}\left(\{h\} \cup \mathcal{U}_{D}\right)$ and $\operatorname{CSP}\left(\{h\} \cup \mathcal{C}_{D}\right)$ are equivalent to the List H-Coloring and H-Retraction problems, respectively. In the former problem, every vertex of an input digraph G gets a list of allowed target vertices in H, and the question is whether G has an H-coloring subject to the list constraints. The latter problem is the same except that each list contains either one vertex or all vertices of H. These problems also attract much attention in graph theory [Hell and Nešetril 2004].
The problem Max $\operatorname{CSP}\left(\{h\} \cup \mathcal{U}_{D}\right)$ can then be viewed as the List H-Coloring optimization problem: for every vertex v of an input digraph G, there is a list $L_{v} \subseteq V_{H}$ along with a function $\rho_{v}: L_{v} \rightarrow \mathbb{Z}^{+}$that indicates the "score" that a mapping $V_{G} \rightarrow V_{H}$ gets if it sends v to a certain vertex (if a mapping sends v to a vertex outside of L_{v} then this adds nothing to the "cost" of this mapping). Then the goal is to maximize the combined "cost" of such a mapping which is obtained by adding weights of preserved arcs and "scores" from the lists. The "score" functions ρ_{v} arise as the result of the possible presence in C of several weighted constraints of the form $u_{D^{\prime}}(v)$ for different $D^{\prime} \subseteq D$ and the same v. Thus, Theorem 6.3 in the case when $\mathcal{F}=\{h\}$ presents a complexity classification of list H-coloring optimization problems. Digraphs H corresponding to the tractable cases of this problem are the digraphs that have an a-Monge adjacency matrix under some total ordering on V_{H} (note that this property of digraphs can be recognized in polynomial time, for example, by using Theorem 5.3). Such matrices without all-one rows or columns are described in Lemma 4.4. It remains to note that, as is easy to see, replacing either some all-zero row or some all-zero columns with all-one ones does not affect the property of being a-Monge.
We remark that another problem related to optimizing list homomorphisms between graphs was recently considered in Gutin et al. [2006], in connection with some problems arising in defence logistics.

Appendix A: Strict Implementations from Case 1

It is assumed throughout that $D=\{0,1,2,3\}$. Implementations should be read as follows:
—the symbol $\xlongequal{s}{ }_{\alpha}$ means "strictly α-implements";

- \mathcal{U} always denotes \mathcal{U}_{D};
$-Y=\{x, y\}$ is the set of primary variables and $Z=\{z, w\}$ is the set of auxiliary variables (see Definition 3.1).

Each implementation produces some predicate g such that either g or $\pi(g)$, or $\pi\left(g^{c}\right)$ (for some permutation π) is a predicate for which a strict implementation has already been found, or else a predicate g such that, for some $D^{\prime} \subset D,\left.g\right|_{D^{\prime}}$ is not supermodular on any chain on D^{\prime}. We will describe the latter situation by writing, for simplicity, that " $\left.g\right|_{D^{\prime}}$ is bad". If $\left|D^{\prime}\right|=2$, then one can directly verify that the corresponding matrix is not a-Monge (there is no need to permute rows and columns). For the case $\left|D^{\prime}\right|=3$, one can use Lemma 4.4 to quickly check that the matrix of $\left.g\right|_{D^{\prime}}$ is not a permuted a-Monge matrix.

1. $\left\{\begin{array}{c}1000 \\ 0110 \\ 1000 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} h_{2}^{\prime} \begin{gathered}1000 \\ 1110 \\ 1000 \\ 0000\end{gathered}=:\left.g \quad g\right|_{\{0,1,3\}}$ is bad
$g(x, y)+1=\max _{z}\left[h_{1}^{\prime}(z, y)+h_{1}^{\prime}(x, z)+u_{\{3\}}(z)\right]$
2. $\left\{h_{2}^{\prime}:=\begin{array}{c}1000 \\ 1101 \\ 1000 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{3} \begin{aligned} & 1000 \\ & 1101 \\ & 1010 \\ & 0000\end{aligned}=:\left.g \quad g\right|_{\{0,2,3\}}$ is bad
$g(x, y)+2=\max _{z}\left[h_{2}^{\prime}(z, x)+h_{2}^{\prime}(z, y)+h_{2}^{\prime}(x, y)+u_{\{3\}}(z)+u_{\{2\}}(x)\right.$
$\left.+u_{\{2\}}(y)\right]$

3. $\left\{\begin{array}{l}1010 \\ 0110 \\ 0000 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1000 \\ & 0100 \\ & 0001 \\ & 0001\end{aligned}=:\left.g \quad g\right|_{\{0,1,3\}}$ is bad
$g(x, y)+2=\max _{z}\left[h_{5}^{\prime}(x, z)+h_{5}^{\prime}(x, y)+h_{5}^{\prime}(y, z)+u_{\{3\}}(z)+u_{\{2,3\}}(x)+u_{\{3\}}(y)\right]$
4. $\left\{\begin{array}{c}1010 \\ h_{6}^{\prime}:= \\ 0111 \\ 1010 \\ 1000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{4} \begin{aligned} & 1010 \\ & 0111 \\ & 1010 \\ & 1001\end{aligned}=:\left.g \quad g\right|_{\{0,1,3\}}$ is bad
$g(x, y)+3=\max _{z}\left[h_{6}^{\prime}(x, z)+h_{6}^{\prime}(x, y)+h_{6}^{\prime}(y, z)+u_{\{2\}}(z)+u_{\{3\}}(x)+u_{\{3\}}(y)\right]$
5. $\left\{h_{7}^{\prime}:=\begin{array}{l}1010 \\ 0111 \\ 1110 \\ 1000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{gathered}1110 \\ 0000 \\ 0000 \\ 1010\end{gathered}=:\left.g \quad g\right|_{\{2,3\}}$ is bad
$g(x, y)+2=\max _{z}\left[h_{7}^{\prime}(z, y)+h_{7}^{\prime}(x, z)+u_{\{0,3\}}(x)\right]$
6. $\left\{\begin{array}{c}1011 \\ 0101 \\ 1010 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{6}^{\prime} \begin{aligned} & 1010 \\ & 0000 \\ & 1010 \\ & 1011\end{aligned}=:\left.g \quad g\right|_{\{0,1,3\}}$ is bad
$g(x, y)+5=\max _{z, w}\left[h_{8}^{\prime}(z, w)+h_{8}^{\prime}(z, x)+h_{8}^{\prime}(z, y)+h_{8}^{\prime}(w, x)+u_{\{2\}}(z)+\right.$ $\left.u_{\{0\}}(w)+u_{\{1,3\}}(x)\right]$
7. $\left\{\begin{array}{l}1011 \\ h_{9}^{\prime}:= \\ 0111 \\ 0010 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1001 \\ & 0101 \\ & 0010 \\ & 1101\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+2=\max _{z}\left[h_{9}^{\prime}(z, x)+h_{9}^{\prime}(x, y)+h_{9}^{\prime}(y, z)+u_{\{3\}}(z)+u_{\{3\}}(x)+u_{\{3\}}(y)\right]$
8. $\left\{h_{10}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 0010 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 3 \begin{aligned} & 1011 \\ & 0111 \\ & 0010 \\ & 0000\end{aligned}=: g \quad g=h_{9}^{\prime}$
$g(x, y)+2=\max _{z}\left[h_{10}^{\prime}(z, x)+h_{10}^{\prime}(z, y)+u_{\{2\}}(z)+u_{\{0,1\}}(x)\right]$
9. $\left\{h_{11}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 0011 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 2 \begin{aligned} & 1000 \\ & 0100 \\ & 0000 \\ & 1100\end{aligned}=: g \quad \pi\left(g^{t}\right)=h_{5}^{\prime}$
where $\pi(0,1,2,3)=(0,1,3,2)$
$g(x, y)+1=h_{11}^{\prime}(x, y)+u_{\{3\}}(x)+u_{\{0,1\}}(y)$
10. $\left\{h_{12}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 0110 \\ 1001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{3} \begin{aligned} & 0110 \\ & 0111 \\ & 0111 \\ & 0000\end{aligned}=:\left.g \quad g\right|_{\{0,1,3\}}$ is bad
$g(x, y)+2=\max _{z}\left[h_{12}^{\prime}(z, y)+h_{12}^{\prime}(x, z)+u_{\{1,2\}}(z)\right]$
11. $\left\{h_{13}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 1010 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{3} \begin{aligned} & 1011 \\ & 0101 \\ & 1010 \\ & 0000\end{aligned}=: g \quad g=h_{8}^{\prime}$
$g(x, y)+2=\max _{z}\left[h_{13}^{\prime}(z, x)+h_{13}^{\prime}(x, y)+h_{13}^{\prime}(y, z)+u_{\{3\}}(z)+u_{\{3\}}(y)\right]$
12. $\left\{h_{14}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 1010 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 0001 \\ & 0111 \\ & 0000 \\ & 0001\end{aligned}=: g \quad \pi(g)=h_{2}^{\prime}$
where $\pi(0,1,2,3)=(3,1,0,2)$
$g(x, y)+2=\max _{z}\left[h_{14}^{\prime}(z, y)+h_{14}^{\prime}(x, z)+u_{\{1,3\}}(z)\right]$
13. $\left\{h_{15}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 1110 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{4} \begin{aligned} & 1011 \\ & 0101 \\ & 1010 \\ & 0000\end{aligned}=: g \quad g=h_{8}^{\prime}$
$g(x, y)+3=\max _{z}\left[h_{15}^{\prime}(x, z)+h_{15}^{\prime}(x, y)+h_{15}^{\prime}(y, z)+u_{\{0,3\}}(z)+u_{\{3\}}(x)+u_{\{3\}}(y)\right]$
14. $\left\{h_{16}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 1110 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 4 \begin{aligned} & 1011 \\ & 0000 \\ & 1011 \\ & 0001\end{aligned}=:\left.g \quad g\right|_{\{0,1,3\}}$ is bad
$g(x, y)+3=\max _{z}\left[h_{16}^{\prime}(z, x)+h_{16}^{\prime}(z, y)+h_{16}^{\prime}(x, z)+u_{\{0,3\}}(z)\right]$
15. $\left\{h_{17}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 1110 \\ 1001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{4} \begin{aligned} & 1010 \\ & 0111 \\ & 1110 \\ & 0001\end{aligned}=:\left.g \quad g\right|_{\{0,1,3\}}$ is bad
$g(x, y)+3=\max _{z}\left[h_{17}^{\prime}(z, x)+h_{17}^{\prime}(z, y)+h_{17}^{\prime}(x, y)+u_{\{1,2\}}(z)\right]$
16. $\left\{h_{18}^{\prime}:=\begin{array}{l}1011 \\ 0111 \\ 1110 \\ 1101\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{5} \begin{aligned} & 1110 \\ & 0000 \\ & 1110 \\ & 1110\end{aligned}=:\left.g \quad g\right|_{\{1,3\}}$ is bad
$g(x, y)+4=\max _{z, w}\left[h_{18}^{\prime}(z, w)+h_{18}^{\prime}(z, y)+h_{18}^{\prime}(w, x)+u_{\{1,2\}}(z)+u_{\{0\}}(w)\right]$
17. $\left\{h_{19}^{\prime}:=\begin{array}{l}1011 \\ 1101 \\ 1010 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{5} \begin{aligned} & 1010 \\ & 1011 \\ & 1010 \\ & 1010\end{aligned}=:\left.g \quad g\right|_{\{1,3\}}$ is bad
$g(x, y)+4=\max _{z, w}\left[h_{19}^{\prime}(z, w)+h_{19}^{\prime}(z, y)+h_{19}^{\prime}(x, z)+u_{\{2\}}(z)+u_{\{2\}}(w)\right.$

$$
\left.+u_{\{1,3\}}(x)\right]
$$

20. $\left\{h_{20}^{\prime}:=\begin{array}{l}1100 \\ 1101 \\ 1000 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{2} \begin{aligned} & 1110 \\ & 1101 \\ & 1011 \\ & 0111\end{aligned}=: g \quad \pi(g)=h_{18}^{\prime}$
where $\pi(0,1,2,3)=(0,3,1,2)$
$g(x, y)+1=h_{20}^{\prime}(x, y)+h_{20}^{\prime}(y, x)+u_{\{2,3\}}(x)+u_{\{2,3\}}(y)$
21. $\left\{h_{21}^{\prime}:=\begin{array}{l}1101 \\ 0110 \\ 0110 \\ 1001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{6} \begin{aligned} & 1001 \\ & 1101 \\ & 0000 \\ & 1001\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+5=\max _{z, w}\left[h_{21}^{\prime}(z, w)+h_{21}^{\prime}(z, x)+h_{21}^{\prime}(z, y)+h_{21}^{\prime}(w, x)+u_{\{3\}}(z)+\right.$ $\left.u_{\{0\}}(w)+u_{\{1,2\}}(x)\right]$
22. $\left\{h_{22}^{\prime}:=\begin{array}{l}1101 \\ 1100 \\ 0010 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 3 \begin{aligned} & 1000 \\ & 1110 \\ & 0010 \\ & 1010\end{aligned}=: g \quad \pi\left(g^{t}\right)=h_{9}^{\prime}$
where $\pi(0,1,2,3)=(0,2,1,3)$
$g(x, y)+2=\max _{z}\left[h_{22}^{\prime}(x, z)+h_{22}^{\prime}(y, z)+u_{\{2,3\}}(z)+u_{\{1,3\}}(x)\right]$
23. $\left\{\begin{array}{l}1101 \\ 1110 \\ 0000 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 2 \begin{aligned} & 1101 \\ & 1110 \\ & 0111 \\ & 1011\end{aligned}=: g \quad \pi(g)=h_{18}^{\prime}$
where $\pi(0,1,2,3)=(0,2,1,3)$
$g(x, y)+1=h_{23}^{\prime}(x, y)+h_{23}^{\prime}(y, x)+u_{\{2,3\}}(x)+u_{\{2,3\}}(y)$
24. $\left\{\begin{array}{l}1101 \\ h_{24}^{\prime}:= \\ 1110 \\ 0110 \\ 1001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1001 \\ & { }_{6} \\ & 0000 \\ & 1001\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+5=\max _{z, w}\left[h_{24}^{\prime}(z, w)+h_{24}^{\prime}(z, x)+h_{24}^{\prime}(z, y)+h_{24}^{\prime}(x, z)+u_{\{3\}}(z)+\right.$ $\left.u_{\{3\}}(w)+u_{\{1,2\}}(x)\right]$
25. $\left\{\begin{array}{l}1110 \\ 1100 \\ 0000 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{2}^{\prime} \begin{gathered}0000 \\ 1101 \\ 0001 \\ 0001\end{gathered}=: g \quad \pi\left(g^{t}\right)=h_{2}^{\prime}$
where $\pi(0,1,2,3)=(1,3,0,2)$
$g(x, y)+1=h_{25}^{\prime}(x, y)+u_{\{1,2,3\}}(x)+u_{\{3\}}(y)$
26. $\left\{h_{26}^{\prime}:=\begin{array}{c}1110 \\ 1100 \\ 1010 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 2 \begin{aligned} & 0000 \\ & 1101 \\ & 1011 \\ & 0001\end{aligned}=: g \quad \pi(g)=h_{9}^{\prime}$
where $\pi(0,1,2,3)=(1,2,3,0)$
$g(x, y)+1=h_{26}^{\prime}(x, y)+u_{\{1,2,3\}}(x)+u_{\{3\}}(y)$
27. $\left\{h_{27}^{\prime}:=\begin{array}{l}1110 \\ 1101 \\ 1010 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{2} \begin{aligned} & 0110 \\ & 0101 \\ & 0010 \\ & 0111\end{aligned}=: g \quad \pi\left(g^{t}\right)=h_{13}^{\prime}$
where $\pi(0,1,2,3)=(1,2,3,0)$
$g(x, y)+1=h_{27}^{\prime}(x, y)+u_{\{3\}}(x)+u_{\{1,2,3\}}(y)$

Appendix B: Strict Implementations from Case 2

The rules for reading implementations are the same as in Appendix A. Each implementation implements some predicate g such that, for some $D^{\prime} \subset D,\left.g\right|_{D^{\prime}}$ is bad, or else a pair for which a strict implementation has already been found.

1. $\left\{\begin{array}{c}1100 \\ 0000 \\ 0000 \\ 0001\end{array}, f:=\begin{array}{l}1000 \\ 0001 \\ 0000 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1000 \\ & 1101 \\ & 0000 \\ & 0101\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+2=\max _{z}\left[f(x, z)+f(y, z)+h(z, x)+u_{\{1\}}(z)+u_{\{1,2\}}(x)\right]$
2. $\left\{\begin{array}{l}1100 \\ 0000 \\ 0000 \\ 0001\end{array}, f:=\begin{array}{l}1110 \\ 0001 \\ 0000 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1000 \\ & 0001 \\ & 0000 \\ & 0001\end{aligned}=: g \quad(h, g)$ is Pair 1
$g(x, y)+2=\max _{z}\left[f(x, z)+h(x, z)+h(y, z)+u_{\{2\}}(z)+u_{\{1,2\}}(x)\right]$
3. $\left\{\begin{array}{c}1100 \\ 0000 \\ 0000 \\ 0001\end{array}, f:=\begin{array}{l}1000 \\ 1001 \\ 1000 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 0101 \\ & 0000 \\ & 0000 \\ & 0101\end{aligned}=:\left.g \quad g\right|_{\{0,1\}}$ is bad
$g(x, y)+3=\max _{w, z}\left[f(z, w)+f(y, w)+h(x, z)+u_{\{2\}}(z)+u_{\{3\}}(w)\right]$
4. $\left\{h:=\begin{array}{l}1100 \\ 0000 \\ 0000 \\ 0001\end{array}, f:=\begin{array}{l}1010 \\ 1010 \\ 1010 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1000 \\ & 1001 \\ & 1000 \\ & 0001\end{aligned}=: g \quad(h, g)$ is Pair 3
$g(x, y)+1=\max _{z}\left[f(z, x)+h(y, z)+u_{\{1\}}(x)\right]$
5. $\left\{\begin{array}{c}1100 \\ \left.h:=\begin{array}{r}1010 \\ 0000 \\ 0000 \\ 00011 \\ 1010 \\ 0001\end{array}\right\}, f:=\mathcal{U} \stackrel{s}{\Longrightarrow} \begin{array}{l}2000 \\ 1001 \\ 1000 \\ 0001\end{array}=: g \quad(h, g) \text { is Pair 3 } \\ g(x, y)+1=\max _{z}[f(x, z)+h(y, z)]\end{array}\right.$
6. $\left\{\begin{array}{c}1100 \\ \left.h:=\begin{array}{r}1110 \\ 0000 \\ 0000 \\ 0001 \\ 1110 \\ 0001\end{array}\right\}\end{array}\right\} \cup \mathcal{U} \xrightarrow{s_{3}} \begin{gathered}1010 \\ 1010 \\ 1010 \\ 0001\end{gathered}=: g(x, y)+2=$ max $_{z}[f(z, x)+f(z, y)+f(y, z)] \quad(h)$ is Pair 4

7. $\left\{h:=\begin{array}{l}1110 \\ 0000 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1010 \\ 0001 \\ 0001 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1000 \\ & 1101 \\ & 0101 \\ & 0101\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+2=\max _{z}\left[f(z, y)+f(y, z)+h(x, z)+u_{\{1\}}(x)+u_{\{1\}}(y)\right]$

8. $\left\{h:=\begin{array}{l}1110 \\ 0000 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1010 \\ 0101 \\ 0101 \\ 0101\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 4 \begin{aligned} & 1010 \\ & 0001 \\ & 0001 \\ & 0001\end{aligned}=: g \quad(h, g)$ is Pair 8
$g(x, y)+3=\max _{z}\left[f(z, y)+f(x, z)+h(z, y)+u_{\{0,3\}}(z)\right]$
9. $\left\{h:=\begin{array}{l}1110 \\ 0000 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1000 \\ 0101 \\ 1101 \\ 0101\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1010 \\ & 0000 \\ & 0111 \\ & 0111\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+2=\max _{z}\left[f(y, z)+h(x, z)+u_{\{0,3\}}(z)\right]$

10. $\left\{h:=\begin{array}{l}1000 \\ 1001 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1000 \\ 1001 \\ 1000 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 4 \begin{aligned} & 1000 \\ & 1101 \\ & 0101 \\ & 0101\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+3=\max _{z}\left[f(z, y)+f(y, z)+h(x, z)+u_{\{3\}}(z)+u_{\{0,1,2\}}(y)\right]$
11. $\left\{h:=\begin{array}{l}1000 \\ 1001 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1010 \\ 1011 \\ 1010 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1000 \\ & 1001 \\ & 1000 \\ & 0001\end{aligned}=: g \quad(h, g)$ is Pair 13
$g(x, y)+2=\max _{z}[f(z, y)+f(x, z)+h(y, z)]$
12. $\left\{h:=\begin{array}{l}1000 \\ 1001 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1010 \\ 1011 \\ 1011 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1000 \\ & 1001 \\ & 1000 \\ & 0001\end{aligned}=: g \quad(h, g)$ is Pair 13
$g(x, y)+1=f(y, x)+u_{\{1\}}(x)+u_{\{0,3\}}(y)$
13. $\left\{h:=\begin{array}{l}1100 \\ 1101 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1010 \\ 1101 \\ 1010 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 3 \begin{aligned} & 1100 \\ & 0101 \\ & 1011 \\ & 0101\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+2=\max _{z}\left[f(y, x)+h(z, y)+h(x, z)+u_{\{3\}}(z)\right]$
14. $\left\{h:=\begin{array}{l}1100 \\ 1101 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1100 \\ 1100 \\ 1011 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 4 \begin{aligned} & 1100 \\ & 0100 \\ & 0011 \\ & 0111\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+3=\max _{z}\left[f(x, y)+h(x, z)+h(y, z)+u_{\{3\}}(z)+u_{\{0,3\}}(x)\right]$
15. $\left\{h:=\begin{array}{l}1100 \\ 1101 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}0000 \\ 1101 \\ 1011 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{4} \begin{aligned} & 0000 \\ & 1011 \\ & 1011 \\ & 1011\end{aligned}=:\left.g \quad g\right|_{\{0,1\}}$ is bad
$g(x, y)+3=\max _{w, z}\left[f(w, y)+h(w, z)+h(x, z)+u_{\{2\}}(w)\right]$
16. $\left\{\begin{array}{l}1100 \\ 1101 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{c}1010 \\ 0001 \\ 1011 \\ 0001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{2} \begin{aligned} & 1010 \\ & 1111 \\ & 0111 \\ & 0111\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+1=\max _{z}[f(y, z)+h(x, z)]$
17. $\left\{\begin{array}{l}1100 \\ 1101 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1110 \\ 0101 \\ 0000 \\ 0101\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1010 \\ & 0001 \\ & 1011 \\ & 0001\end{aligned}=: g \quad(h, g)$ is Pair 19
$g(x, y)+1=f(x, y)+u_{\{2\}}(x)+u_{\{0,2,3\}}(y)$
18. $\left\{h:=\begin{array}{l}1100 \\ 1101 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}1010 \\ 0101 \\ 1010 \\ 0101\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{4} \begin{aligned} & 1100 \\ & 0111 \\ & 0000 \\ & 0111\end{aligned}=:\left.g \quad g\right|_{\{0,1,2\}}$ is bad
$g(x, y)+3=\max _{z}\left[f(z, x)+h(x, z)+h(y, z)+u_{\{0,3\}}(z)\right]$
19. $\left\{h:=\begin{array}{l}1100 \\ 1101 \\ 0001 \\ 0001\end{array}, f:=\begin{array}{l}0000 \\ 0101 \\ 1011 \\ 0101\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} 2 \begin{aligned} & 1010 \\ & 1101 \\ & 1010 \\ & 0000\end{aligned}=: g \quad(h, g)$ is Pair 16
$g(x, y)+1=f(y, x)+u_{\{0,1,2\}}(x)+u_{\{0\}}(y)$

20. $\left\{h:=\begin{array}{l}1000 \\ 1001 \\ 1001 \\ 0001\end{array}, f:=\begin{array}{l}0000 \\ 1101 \\ 1011 \\ 0000\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{4} \begin{aligned} & 0000 \\ & 1011 \\ & 1011 \\ & 1011\end{aligned}=:\left.g \quad g\right|_{\{0,1\}}$ is bad $g(x, y)+3=\max _{w, z}\left[f(z, w)+f(w, y)+h(x, z)+u_{\{1,3\}}(z)+u_{\{2\}}(w)\right]$
21. $\left\{h:=\begin{array}{l}1100 \\ 1100 \\ 1101 \\ 0001\end{array}, f:=\begin{array}{l}1001 \\ 0100 \\ 1101 \\ 1001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{4} \begin{aligned} & 1101 \\ & 1001 \\ & 1101 \\ & 1101\end{aligned}=:\left.g \quad g\right|_{\{0,1\}}$ is bad
$g(x, y)+3=\max _{w, z}\left[f(z, y)+f(x, w)+h(z, w)+u_{\{0\}}(z)+u_{\{3\}}(w)\right]$
22. $\left\{\begin{array}{c}1100 \\ 1100 \\ 1101 \\ 0001\end{array}, f:=\begin{array}{l}1101 \\ 0100 \\ 1101 \\ 1001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow} \begin{aligned} & 1001 \\ & 0100 \\ & 1101 \\ & 1001\end{aligned}=: g \quad(h, g)$ is Pair 25
$g(x, y)+2=\max _{z}\left[f(z, x)+f(z, y)+u_{\{1,3\}}(z)+u_{\{2\}}(x)\right]$
23. $\left\{h:=\begin{array}{l}1100 \\ 1100 \\ 0011 \\ 0011\end{array}, f:=\begin{array}{l}1001 \\ 0110 \\ 0110 \\ 1001\end{array}\right\} \cup \mathcal{U} \stackrel{s}{\Longrightarrow}{ }_{4} \begin{aligned} & 1111 \\ & 1001 \\ & 1001 \\ & 1111\end{aligned}=:\left.g \quad g\right|_{\{0,1\}}$ is bad
$g(x, y)+3=\max _{w, z}\left[f(z, y)+f(w, x)+h(z, w)+u_{\{3\}}(z)+u_{\{0\}}(w)\right]$

ACKNOWLEDGMENTS. The authors are thankful to Gerhard Woeginger for encouraging this collaboration and to Johan Håstad for suggesting to use the bounded occurrence property in our proofs. The authors would also like to thank the anonymous referees for providing useful comments on the article.

REFERENCES

Alimonti, P., and Kann, V. 2000. Some APX-completeness results for cubic graphs. Theoret. Comput. Sci. 237, 1-2, 123-134.
Ausiello, G., Creszenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M. 1999. Complexity and Approximation. Springer-Verlag, New York.

BAZGAN, C., AND KARPINSKI, M. 2005. On the complexity of global constraint satisfaction. In Proceedings of the International Symposium on Algorithms and Computation (ISAAC'05). 624-633.
BERMAN, P., AND KARPINSKI, M. 2003. Improved approximation lower bounds on small occurrence optimization. Tech. Rep. TR03-008, Electronic Colloquium on Computational Complexity (ECCC).
Börner, F., Bulatov, A., Jeavons, P., and Krokhin, A. 2003. Quantified constraints: Algorithms and complexity. In Proceedings of the Workshop on Computer Science Logic (CSL'03). Lecture Notes in Computer Science, vol. 2803. Springer-Verlag, New York, 58-70.
BuLATOV, A. 2003. Tractable conservative constraint satisfaction problems. In Proceedings of the Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 321330.

Bulatov, A. 2006. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53, 1, 66-120.
Bulatov, A., and Dalmau, V. 2007. Towards a dichotomy theorem for the counting constraint satisfaction problem. Inf. Computat. 205, 5, 651-678.
Bulatov, A., Jeavons, P., AND Krokhin, A. 2005. Classifying complexity of constraints using finite algebras. SIAM J. Comput. 34, 3, 720-742.
Burkard, R., Klinz, B., and Rudolf, R. 1996. Perspectives of Monge properties in optimization. Disc. Appl. Math. 70, 95-161.
Cohen, D., Cooper, M., Jeavons, P., and Krokhin, A. 2005. Supermodular functions and the complexity of Max CSP. Disc. Appl. Math. 149, 1-3, 53-72.
CREIGNOU, N. 1995. A dichotomy theorem for maximum generalized satisfiability problems. J. Comput. Syst. Sci. 51, 511-522.
Creignou, N., Khanna, S., and Sudan, M. 2001. Complexity classifications of Boolean constraint satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7.
Datar, M., Feder, T., Gionis, A., Motwani, R., and Panigrahy, R. 2003. A combinatorial algorithm for MAX CSP. Inf. Proc. Lett. 85, 6, 307-315.
DEINEKO, V., RUDOLF, R., AND WOEGINGER, G. 1994. A general approach to avoiding 2×2 submatrices. Computing 52, 371-388.
Engebretsen, L. 2004. The non-approximability of non-Boolean predicates. SIAM J. Disc. Math. 18, 1, 114-129.
FEDER, T., AND VARDI, M. 1998. The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM J. Comput. 28, 57-104.
Fujishige, S. 2005. Submodular Functions and Optimization, 2nd ed. Annals of Discrete Mathematics, vol. 58. Elsevier.
Gutin, G., Rafiey, A., Yeo, A., And Tso, M. 2006. Level of repair analysis and minimum cost homomorphisms of graphs. Disc. Appl. Math. 154, 6, 881-889.
HAST, G. 2005. Beating a random assignment: Approximating constraint satisfaction problems. Ph.D. dissertation Royal Institute of Technology, Stockholm, Sweden.
HÅSTAD, J. 2000. On bounded occurrence constraint satisfaction. Inf. Proc. Lett. 74, 1-2, 1-6.
HÅSTAD, J. 2001. Some optimal inapproximability results. J. ACM 48, 798-859.
HÅSTAD, J. 2005. Every 2-CSP allows nontrivial approximation. In Proceedings of the Annual ACM Symposium on Theory of Computing (STOC'05). ACM, New York, 740-746.
Hell, P. 2003. Algorithmic aspects of graph homomorphisms. In Surveys in Combinatorics 2003, C. Wensley, Ed. LMS Lecture Note Series, vol. 307. Cambridge University Press, Cambridge, MA, 239-276.

Hell, P., AND NeŠetřil, J. 2004. Graphs and Homomorphisms. Oxford University Press.
IWAtA, S., FLEISCHER, L., AND FUjishige, S. 2001. A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48, 4, 761-777.
JONSSON, P. 2000. Boolean constraint satisfaction: Complexity results for optimization problems with arbitrary weights. Theoret. Comput. Sci. 244, 1-2, 189-203.
Jonsson, P., Klasson, M., And Krokhin, A. 2006. The approximability of three-valued Max CSP. SIAM J. Comput. 35, 6, 1329-1349.
Jonsson, P., AND Krokhin, A. 2007. Maximum H-colourable subdigraphs and constraint optimization with arbitrary weights. J. Comput. Syst. Sci. 73, 5, 691-702.
KARPINSKI, M. 2001. Approximating bounded degree instances of NP-hard problems. In Proceedings 13th Conference on Fundamentals of Computation Theory, FCT'01. Lecture Notes in Computer Science, vol. 2138. Springer-Verlag, New York, 24-34.
Khanna, S., Sudan, M., Trevisan, L., and Williamson, D. 2001. The approximability of constraint satisfaction problems. SIAM J. Comput. 30, 6, 1863-1920.
Khot, S., Kindler, G., Mossel, E., And O'Donnell, R. 2007. Optimal inapproximability results for Max-Cut and other 2-variable CSPs? SIAM J. Comput. 37, 1, 319-357.
KLINZ, B., RUDOLF, R., AND WOEGINGER, G. 1995. Permuting matrices to avoid forbidden submatrices. Disc. Appl. Math. 60, 223-248.
Krokhin, A., Bulatov, A., And Jeavons, P. 2005. The complexity of constraint satisfaction: an algebraic approach. In Structural Theory of Automata, Semigroups, and Universal Algebra. NATO Science Series II: Math., Phys., Chem., vol. 207. Springer Verlag, New York, 181-213.
Krokhin, A., AND Larose, B. 2008. Maximizing supermodular functions on product lattices, with application to maximum constraint satisfaction. SIAM J. Disc. Math. 22, 1, 312-328.
PE'ER, I., PUPKO, T., SHAMIR, R., AND Sharan, R. 2004. Incomplete directed perfect phylogeny. SIAM J. Comput. 33, 3, 590-607.

Rudolf, R. 1994. Recognition of d-dimensional Monge arrays. Disc. Appl. Math. 52, 1, 71-82.
SChAEFER, T. 1978. The complexity of satisfiability problems. In Proceedings of the Annual ACM Symposium on Theory of Computing (STOC'78). ACM, New York, 216-226.
SCHRIJVER, A. 2000. A combinatorial algorithm minimizing submodular functions in polynomial time. J. Combinat. Theory, Ser. B 80, 346-355.

TOPKIS, D. 1998. Supermodularity and Complementarity. Princeton University Press, Princeton, NJ.
Williams, R. 2005. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoret. Comput. Sci. 348, 2-3, 357-365.

RECEIVED NOVEMBER 2005; REVISED JUNE 2008; ACCEPTED JUNE 2008

[^0]: ${ }^{1}$ An example of such a program can be obtained from the authors or be anonymously downloaded from http://www.ida.liu.se/~petej/supermodular.html.

[^1]: ${ }^{2}$ Other names used for such matrices are inverse Monge and dual Monge.

