
16

The Approximability of MAX CSP

with Fixed-Value Constraints

VLADIMIR DEINEKO

University of Warwick, UK

PETER JONSSON AND MIKAEL KLASSON

Linköpings Universitet, Sweden

AND

ANDREI KROKHIN

Durham University, UK

Abstract. In the maximum constraint satisfaction problem (MAX CSP), one is given a finite collection
of (possibly weighted) constraints on overlapping sets of variables, and the goal is to assign values
from a given finite domain to the variables so as to maximize the number (or the total weight, for
the weighted case) of satisfied constraints. This problem is NP-hard in general, and, therefore, it is
natural to study how restricting the allowed types of constraints affects the approximability of the
problem. In this article, we show that any MAX CSP problem with a finite set of allowed constraint
types, which includes all fixed-value constraints (i.e., constraints of the form x = a), is either solvable
exactly in polynomial time or else is APX-complete, even if the number of occurrences of variables
in instances is bounded. Moreover, we present a simple description of all polynomial-time solvable
cases of our problem. This description relies on the well-known algebraic combinatorial property of
supermodularity.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]:
General

V. Deineko is partially supported by DIMAP. P. Jonsson was partially supported by the Center for
Industrial Information Technology (CENIIT) under grant 04.01, and by the Swedish Research Council
(VR) under grants 621-2003-3421 and 2006-4532. A. Krokhin was partially supported by the UK
EPSRC grant EP/C543831/1.

Authors’ addresses: V. Deineko, Warwick Business School, University of Warwick, Coventry, CV4
7AL, UK, e-mail: Vladimir.Deineko@wbs.ac.uk; P. Jonsson and M. Klasson, Department of Computer
and Information Science, Linköpings, Sweden, e-mail: {peter.jonsson; mikael.klasson}@ida.liu.se;
A. Krokhin, Department of Computer Science, Durham University, Durham, DH1 3LE, UK, e-mail:
andrei.krokhin@durham.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0004-5411/2008/09-ART16 $5.00 DOI 10.1145/1391289.1391290 http://doi.acm.org/

10.1145/1391289.1391290

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1391289.1391290&domain=pdf&date_stamp=2008-09-18

16:2 V. DEINEKO ET AL.

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Complexity of approximation, dichotomy, maximum constraint
satisfaction, Monge properties, supermodularity

ACM Reference Format:

Deineko, V., Jonsson, P., Klasson. M., and Krokhin, A. 2008. The approximability of MAX CSP
with fixed-value constraints. J. ACM 55, 4, Article 16, (September 2008), 37 pages. DOI =
10.1145/1391289.1391290 http://doi.acm.org/10.1145/1391289.1391290

1. Introduction and Related Work

1.1. BACKGROUND. Many combinatorial optimization problems are NP-hard,
and the use of approximation algorithms is one of the most prolific techniques
to deal with NP-hardness. However, hard optimization problems exhibit different
behaviour with respect to approximability, and complexity theory for approximation
is now a well-developed area [Ausiello et al. 1999].

Constraint satisfaction problems (CSPs) have always played a central role in this
direction of research, since the CSP framework contains many natural computa-
tional problems, for example, from propositional logic and graph theory (see, e.g.,
Creignou et al. [2001] and Hell and Nešetřil [2004]). In a CSP, informally speaking,
one is given a finite collection of constraints on overlapping sets of variables, and
the goal is to decide whether there is an assignment of values from a given domain
to the variables satisfying all constraints (decision problem) or to find an assign-
ment satisfying maximum number of constraints (optimization problem). These
are the main versions of the CSP, and there are many other versions obtained from
them by modifying the objective (see, e.g., Creignou et al. [2001] and Krokhin
et al. [2005]). In this article, we will focus on the optimization problems, which
are known as maximum constraint satisfaction problems, MAX CSP for short. The
most well-known examples of such problems are MAX k-SAT and MAX CUT. Let
us now formally define MAX CSP.

Let D denote a finite set with |D| > 1. Let R(m)
D denote the set of all m-ary

predicates over D, that is, functions from Dm to {0, 1}, and let RD = ⋃∞
m=1 R(m)

D .
Also, let Z

+ denote the set of all non-negative integers.

Definition 1.1. A constraint over a set of variables V = {x1, x2, . . ., xn} is an
expression of the form f (x) where

— f ∈ R(m)
D is called the constraint predicate; and

—x = (xi1
, . . ., xim) is called the constraint scope.

The constraint f (x) is said to be satisfied on a tuple a = (ai1
, . . ., aim) ∈ Dm if

f (a) = 1.

Note that throughout the article the values 0 and 1 taken by any predicate will
be considered as integers, not as Boolean values, and addition will always denote
the addition of integers.

Definition 1.2. For a finite F ⊆ RD, an instance of MAX CSP(F) is a pair
(V, C) where

—V = {x1, . . ., xn} is a set of variables taking their values from the set D;

—C is a collection of constraints f1(x1), . . ., fq(xq) over V , where fi ∈ F for all
1 ≤ i ≤ q.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:3

The goal is to find an assignment ϕ : V → D that maximizes the number of
satisfied constraints, that is, to maximize the function f : Dn → Z

+, defined by
f (x1, . . ., xn) = ∑q

i=1 fi (xi). If the constraints have (positive integral) weights �i ,
1 ≤ i ≤ q, then the goal is to maximize the total weight of satisfied constraints,
that is, to maximize the function f defined by f (x1, . . ., xn) = ∑q

i=1 �i · fi (xi).

Complexity classifications for various versions of constraint satisfaction prob-
lems have attracted much attention in the recent years (see survey [Krokhin et al.
2005]) because, as Creignou et al. [2001] nicely put it, these classifications “present
a reasonably accurate bird’s eye view of computational complexity and the equiv-
alence classes it has created”. Classifications with respect to a set of allowed con-
straint types (such as F in MAX CSP(F) above) have been of particular interest,
see for example, Börner et al. [2003], Bulatov [2003], Bulatov and Dalmau [2007],
Bulatov et al. [2005], Creignou et al. [2001], Feder and Vardi [1998], and Hell
[2003].

Boolean constraint satisfaction problems (i.e., when D = {0, 1}) are by far better
studied [Creignou et al. 2001] than the non-Boolean version. The main reason is,
in our opinion, that Boolean constraints can be conveniently described by propo-
sitional formulas which provide a flexible and easily manageable tool, and which
have been extensively used in complexity theory from its very birth. Moreover,
Boolean CSPs suffice to represent a number of well-known problems and to ob-
tain results clarifying the structure of complexity for large classes of interesting
problems [Creignou et al. 2001]. In particular, Boolean CSPs were used to provide
evidence for one of the most interesting phenomena in complexity theory, namely
that interesting problems belong to a small number of complexity classes [Creignou
et al. 2001], which cannot be taken for granted due to Ladner’s theorem. After the
pioneering work of Schaefer [1978] presenting a tractable versus NP-complete di-
chotomy for Boolean decision CSPs, many classification results have been obtained
(see, e.g., Creignou et al. [2001]), most of which are dichotomies. In particular, a
dichotomy in complexity and approximability for Boolean MAX CSP has been ob-
tained by Creignou [1995], and it was slightly refined in Khanna et al. [2001] (see
also Creignou et al. [2001]). The complexity of Boolean MAX CSP with arbitrary
(i.e., not necessarily positive) weights was classified in Jonsson [2000].

Many papers on various versions of Boolean CSPs mention studying non-
Boolean CSPs as a possible direction of future research, and additional motivation
for it, with an extensive discussion, was given by Feder and Vardi [1998]. Di-
chotomy results on non-Boolean CSPs give a better understanding of what makes a
computational problem tractable or hard, and they give a more clear picture of the
structure of complexity of problems, since many facts observed in Boolean CSPs
appear to be special cases of more general phenomena. Notably, many appropriate
tools for studying non-Boolean CSPs have not been discovered until recently. For
example, universal algebra tools have proved to be very fruitful when working with
decision, counting, and quantified CSPs [Börner et al. 2003; Bulatov 2003, 2006;
Bulatov and Dalmau 2007; Bulatov et al. 2005] while ideas from lattice theory,
combinatorial optimization and operations research have been recently suggested
for optimization problems [Cohen et al. 2005; Krokhin and Larose 2008].

The problem MAX CSP is NP-hard in general (i.e., without restrictions on the
type of allowed constraints), and there is a significant body of results on algo-
rithmic and complexity-theoretical aspects of this problem, including results on

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:4 V. DEINEKO ET AL.

superpolynomial general algorithms (e.g., Datar et al. [2003] and Williams [2005]),
polynomial algorithms for special cases [Cohen et al. 2005; Krokhin and Larose
2008], explicit approximability bounds (e.g., Engebretsen [2004], Hast [2005],
Håstad [2001, 2005], and Khot et al. [2007]), and complexity of approximation
(e.g., Bazgan and Karpinski [2005], Creignou et al. [2001], and Jonsson et al.
[2006]).

The main research problem that we will look at in this article is the following
one.

PROBLEM 1. Classify the problems MAX CSP(F) with respect to complexity of
approximation.

We say that a predicate is nontrivial if it is not identically 0. We will always
assume that F is finite and contains only non-trivial predicates. Whenever we
do not specify which version (weighted or unweighted) we consider, we mean
unweighted MAX CSP. Note that the definition allows one to repeat constraints in
instances (we follow Creignou et al. [2001] in this), so our unweighted problem
actually allows polynomially bounded weights. However, our tractability results
will hold for the weighted version, while in our hardness results, for every F , we
will use only instances where every constraint occurs at most kF times (where kF
is a constant depending on F).

For the Boolean case, Problem 1 was solved in Creignou [1995], Creignou et al.
[2001], and Khanna et al. [2001]. It appears that Boolean MAX CSP(F) problems
exhibit a dichotomy in that such a problem is either solvable exactly in polynomial
time or else APX-complete, in which case it does not admit a PTAS (polynomial-
time approximation scheme) unless P = NP. These papers also describe the bound-
ary between the two cases. This dichotomy result was extended to the case |D| = 3
in Jonsson et al. [2006]. The complexity of non-Boolean MAX CSP with arbi-
trary (i.e., not necessarily positive) weights was recently classified in Jonsson and
Krokhin [2007].

1.2. RESULTS. For a subset D′ ⊆ D, let uD′ denote the predicate such that
uD′(x) = 1 if and only if x ∈ D′. Let UD = {u D′ | ∅ 	= D′ ⊆ D}, that is, UD is the
set of all non-trivial unary predicates on D. Furthermore, let CD = {u{d} | d ∈ D}.
Note that predicates from CD give rise to constraints of the form x = d, that is,
fixed-value constraints.

The decision problems CSP(F) are similar to MAX CSP(F), but the the task is to
decide whether all constraints in a given instance can be simultaneously satisfied.
Problems of the form CSP(F ∪ UD) are known as conservative (or list) CSPs,
and their complexity has been completely classified by Bulatov [2003], while a
complexity classification for the problems of the form CSP(F ∪ CD) would imply
a classification for all problems CSP(F) [Bulatov et al. 2005].

In this article, we solve the above Problem 1 for all sets of the form F ∪ CD
where D is any finite set. (Note that this does not necessarily imply a full solution
to Problem 1, as it would for decision problems.) Our result is parallel to Bula-
tov’s classification of conservative CSPs [Bulatov 2003], but our techniques are
quite different from the universal-algebraic techniques used in Bulatov [2003]. The
universal-algebraic techniques from Bulatov [2003] and Bulatov et al. [2005] can-
not be applied in the optimization setting because the basic properties of decision
CSPs that make these techniques useful are not satisfied by MAX CSP.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:5

It was suggested in Section 6 of Cohen et al. [2005] that MAX CSP(F ∪ CD) is
solvable exactly in polynomial time if and only if all predicates in F are super-
modular with respect to some linear ordering on D (see definitions in Section 4).
We prove that this is indeed the case, and that in all other cases the problem
MAX CSP(F ∪ CD) is APX-complete. Moreover, we show that every APX-
complete problem of the above form is APX-complete even when we further restrict
it to instances where the number of occurrences of variables is bounded by some
(possibly large) constant. Note that approximability properties for constraint prob-
lems with the bounded occurrence property (as well as for related problems on
graphs with bounded degree) have been intensively studied in the literature (see,
e.g., Alimonti and Kann [2000], Berman and Karpinski [2003], Håstad [2000], and
Karpinski [2001]).

Our classification result uses the combinatorial property of supermodularity,
which is a well-known source of tractable optimization problems [Burkard et al.
1996; Fujishige 2005; Topkis 1998], and the technique of strict implementa-
tions [Creignou et al. 2001; Khanna et al. 2001] which allows one to show that
an infinite family of problems can express, in a regular way, one of a few basic
hard problems. We remark that the idea to use supermodularity in the analysis of
the complexity of MAX CSP(F) is very new, and has not been even suggested in
the literature prior to Cohen et al. [2005]. It was shown in Cohen et al. [2005]
and Jonsson et al. [2006] that supermodularity is the only source of tractability for
problems of the form MAX CSP(F) when D is small (i.e., |D| ≤ 3). This, together
with the results obtained in this article, suggests that supermodularity is indeed the
appropriate tool for tackling Problem 1.

Some of our technical results (those in Section 5) are of independent interest in
combinatorics. Klinz et al. [1995] study how one can permute rows and columns
of a 0-1 matrix so as to avoid a collection of given forbidden submatrices; some
results of this nature have later been used in constructing phylogenetic trees [Pe’er
et al. 2004]. Klinz et al. [1995] obtain many results in this direction, but they leave
open the case when matrices are square and rows and columns must be permuted
by the same permutation (see Section 6 of Klinz et al. [1995]). Our results clarify
the situation in this special case for one type of forbidden matrices considered in
Theorem 4.5 of Klinz et al. [1995].

The structure of the article is as follows: Section 2 contains definitions of approx-
imation complexity classes and reductions. In Section 3, we describe our reduction
techniques, and in Section 4 we give the basics of supermodularity and discuss
the relevance of supermodularity in the study of MAX CSP. Section 5 contains
technical results that are used in the proof of the main classification result of the
article, and this proof can be found in Section 6. Finally, in Section 7, we discuss
an application of our results to the optimization version of the LIST H -COLORING

problem for digraphs. Some of the technical proofs omitted from the main body of
this article can be found in Appendices.

2. Basics of Approximability

A combinatorial optimization problem is defined over a set of instances (admissible
input data); each instance I has a finite set sol(I) of feasible solutions associated
with it. The objective function attributes a positive integer cost to every solution in
sol(I). The goal in an optimization problem is, given an instanceI, to find a feasible

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:6 V. DEINEKO ET AL.

solution of optimum cost. The optimal cost is the largest one for maximization prob-
lems and the smallest one for minimization problems. A combinatorial optimization
problem is said to be an NP optimization (NPO) problem if its instances and solu-
tions can be recognized in polynomial time, the solutions are polynomial-bounded
in the input size, and the objective function can be computed in polynomial time
(see, e.g., Ausiello et al. [1999]).

Definition 2.1. A solution s ∈ sol(I) to an instance I of an NPO problem �
is r -approximate if

max

{
cost(s)

Opt(I)
,

Opt(I)

cost(s)

}
≤ r,

where Opt(I) is the optimal cost for a solution to I. An approximation algorithm
for an NPO problem � has performance ratio R(n) if, given any instance I of �
with |I| = n, it outputs an R(n)-approximate solution.

Definition 2.2. PO is the class of NPO problems that can be solved (to op-
timality) in polynomial time. An NPO problem � is in the class APX if there
is a polynomial time approximation algorithm for � whose performance ratio is
bounded by a constant.

The following result is contained in Proposition 2.3 [Cohen et al. 2005] and its
proof.

LEMMA 2.3. Every (weighted or not) problem MAX CSP(F) belongs to APX.
Moreover, if a is the maximum arity of any predicate inF then there is a polynomial
time algorithm that, for every instance I of MAX CSP(F), produces a solution
satisfying at least q

|D|a constraints, where q is the number of constraints in I.

Completeness in APX is defined using an appropriate reduction, called AP-
reduction. Our definition of this reduction follows [Creignou et al. 2001; Khanna
et al. 2001].

Definition 2.4. An NPO problem �1 is said to be AP-reducible to an NPO
problem �2 if two polynomial-time computable functions F and G and a constant
α exist such that

(a) for any instance I of �1, F(I) is an instance of �2;

(b) for any instance I of �1, and any feasible solution s ′ of F(I), G(I, s ′) is a
feasible solution of I;

(c) for any instance I of �1, and any r ≥ 1, if s ′ is an r -approximate solution of
F(I) then G(I, s ′) is an (1+ (r −1)α +o(1))-approximate solution of I where
the o-notation is with respect to |I|.

An NPO problem � is APX-hard if every problem in APX is AP-reducible to
it. If, in addition, � is in APX then � is called APX-complete.

It is a well-known fact (see, e.g., Section 8.2.1 in Ausiello et al. [1999]) that AP-
reductions compose. We shall now give an example of an APX-complete problem,
which will be used extensively in this article.

Example 2.5. Given a graph G = (V, E), the MAXIMUM k-COLORABLE SUB-
GRAPH problem, k ≥ 2, is the problem of maximizing |E ′|, E ′ ⊆ E , such that the

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:7

graph G ′ = (V, E ′) is k-colorable. This problem is known to be APX-complete (it
is Problem GT33 in Ausiello et al. [1999]). Let neqk denote the binary disequality
predicate on D = {0, 1, . . ., k − 1}, k ≥ 2, that is, neqk(x, y) = 1 ⇔ x 	= y.
Consider the problem MAX CSP({neqk}) restricted to instances where every pair
of variables appears in the scope of at most one constraint. This problem is exactly
the MAXIMUM k-COLORABLE SUBGRAPH problem. To see this, think of vertices of
a given graph as of variables that take values from D, and introduce the constraint
neqk(x, y) for every pair of variables x, y such that (x, y) is an edge in the graph.
It follows that the problem MAX CSP({neqk}) is APX-complete.

Note that the weighted MAX CSP({neqk}) problem coincides with the well-
known problem MAX k-CUT (it is Problem ND17 in Ausiello et al. [1999]). The
problem MAX 2-CUT is usually referred to as simply MAX CUT.

In some of our hardness proofs, it will be convenient for us to use another type of
approximation-preserving reduction, called an L-reduction [Ausiello et al. 1999].

Definition 2.6. An NPO problem �1 is said to be L-reducible to an NPO
problem �2 if two polynomial-time computable functions F and G and positive
constants α, β exist such that

(a) given any instance I of �1, algorithm F produces an instance I ′ = F(I) of �2,
such that the cost of an optimal solution for I ′, Opt(I ′), is at most α · Opt(I);

(b) given I, I ′ = F(I), and any solution s ′ to I ′, algorithm G produces a solution
s to I such that |cost(s) − Opt(I)| ≤ β · |cost(s ′) − Opt(I ′)|.

It is well known (see, e.g., Lemma 8.2 in Ausiello et al. [1999]) that, within APX, the
existence of an L-reduction from �1 to �2 implies the existence of an AP-reduction
from �1 to �2.

3. Reduction Techniques

The main reduction technique in our APX-completeness proofs is based on strict
implementations, see Creignou et al. [2001] and Khanna et al. [2001], where this
notion was introduced for the Boolean case. We will give this definition in a slightly
different form from that of [Creignou et al. 2001; Khanna et al. 2001], but it can
easily be checked to be equivalent to the original one (in the case |D| = 2).

Definition 3.1. Let Y = {y1, . . ., ym} and Z = {z1, . . ., zn} be two disjoint sets
of variables. The variables in Y are called primary and the variables in Z auxiliary.
The set Z may be empty. Let g1(y1), . . ., gs(ys), s > 0, be constraints over Y ∪ Z .
If g(y1, . . ., ym) is a predicate such that the equality

g(y1, . . ., ym) + (α − 1) = max
Z

s∑
i=1

gi (yi)

holds for all y1, . . ., ym , and some fixed α ∈ Z
+, then this equality is said to be a

strict α-implementation of g from g1, . . ., gs .

We use α − 1 rather than α in the above equality to ensure that this notion
coincides with the original notion of a strict α-implementation for Boolean con-
straints [Creignou et al. 2001; Khanna et al. 2001]. The intuition behind the notion
of strict implementation is that it allows one to modify instances while keeping

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:8 V. DEINEKO ET AL.

control over costs of solutions. For example, assume that we have a constraint
g(u, v) in an instance I of MAX CSP, and there is a strict 2-implementation
g(y1, y2) + 1 = maxz (g1(y1, z) + g2(z, y2)). Then the constraint g(u, v) can be
replaced by two constraints g1(u, z), g2(z, v) such that z does not appear in I,
and we know that every solution of cost c to I can be modified (by choosing an
appropriate value for z) to a solution of cost c + 1 to the new instance.

We say that a collection of predicates F strictly implements a predicate g if, for
some α ∈ Z

+, there exists a strict α-implementation of g using predicates only
from F . In this case we write F s=⇒α f . We write F s=⇒ f if F s=⇒α f for some
α. It is not difficult to show that if f can be obtained from F by a series of strict
implementations then it can also be obtained by a single strict implementation (for
the Boolean case, this is shown in Lemma 5.8 [Creignou et al. 2001]). In this article,
we will use about 60 specific strict implementations for the case when |D| = 4.
Each of them can be straightforwardly verified by hand, or by a simple computer
program.1

The following lemma is a simple (but important) example of how strict imple-
mentations work.

LEMMA 3.2. CD strictly implements every predicate in UD.

PROOF. It is easy to see that, for any D′ ⊆ D, uD′(x) = ∑
d∈D′ u{d}(x) is a

strict 1-implementation.

In our proofs, we will use problems with the bounded occurrence property, and
we now introduce notation for such problems.

Definition 3.3. MAX CSP(F) − k will denote the problem MAX CSP(F) re-
stricted to instances where the number of occurrences of each variable is bounded
by k. We will write that MAX CSP(F) − B is APX-complete to denote that
MAX CSP(F) − k is APX-complete for some k.

Note that, by definition, repetitions of constraints in instances of MAX CSP are
allowed. If a variable occurs t times in a constraint which appears s times in an
instance, then this would contribute t ·s to the number of occurrences of that variable
in the instance.

LEMMA 3.4. IfF strictly implements a predicate f , and MAX CSP(F∪{ f })−B
is APX-complete, then MAX CSP(F) − B is APX-complete as well.

PROOF. This lemma for the Boolean case, but without the assumption on
bounded occurrences, is Lemma 5.18 in Creignou et al. [2001]. Our proof is almost
identical to the proof of Lemma 5.18 in Creignou et al. [2001], and it uses the
same AP-reduction. Essentially, we only need to verify that the mapping F in this
reduction preserves the bounded occurrence property.

Let k be a number such that MAX CSP(F ∪ { f })−k is APX-complete and let α ∈
Z

+ be such that F s=⇒α f . Take any instance I of MAX CSP(F ∪ { f }) − k. Note
that every predicate in F can be (trivially) strictly α-implemented from F in such
a way that each auxiliary variable appears only once in the strict implementation

1 An example of such a program can be obtained from the authors or be anonymously downloaded
from http://www.ida.liu.se/~petej/supermodular.html.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:9

(simply use any satisfiable collection of α − 1 constraints with no repetitions of
variables); this is a small technicality which ensures uniformity in the following
transformation of instances. Replace every constraint in I by a set of constraints
appearing in the right-hand side of its strict α-implementation from F , keeping the
same primary variables and using fresh copies of auxiliary variables every time.
Denote the obtained instance by I ′. The function F in this AP-reduction will be
such that F(I) = I ′ for all I. Let t be the maximum number of occurrences of a
variable (primary or auxiliary) in the right-hand side of the strict implementation
of f from F . It is clear that I ′ is an instance of MAX CSP(F), and that the number
of occurrences of any variable in I ′ is bounded by k ′ = tk.

Let V ′ be the set of variables in I ′. Let ϕ′ : V ′ → D be an r -approximate solution
to I ′. The mapping G uses two possible solutions to I and takes the better of the
two. The first solution is ϕ′|V , while the second is a solution satisfying β = q

|D|a
constraints which exists by Lemma 2.3 (here a is the maximum arity of constraints
in F ∪ { f }).

One can show, by literally repeating the argument in the proof of Lemma 5.18
in Creignou et al. [2001], that G(ϕ′) is an r ′-approximate solution to I where
r ′ ≤ 1 + γ (r − 1) with γ = β(α − 1) + 1.

We have constructed an AP-reduction from MAX CSP(F ∪ { f }) − k to
MAX CSP(F) − k ′, thus proving the lemma.

Lemma 3.4 will be used as follows in our APX-completeness proofs: if F ′ is a
fixed finite collection of predicates each of which can be strictly implemented by
F then we can assume that F ′ ⊆ F . For example, if F contains a binary predicate
f then we can assume, at any time when it is convenient, that F also contains
f ′(x, y) = f (y, x), since this equality is a strict 1-implementation of f ′.

Finally, we will use a technique based on domain restriction. For a subset D′ ⊆ D,
let F |D′ = { f |D′ | f ∈ F and f |D′ is nontrivial}.

LEMMA 3.5. Let D′ ⊆ D and uD′ ∈ F . If MAX CSP(F |D′) − B is APX-
complete, then so is MAX CSP(F) − B.

PROOF. Let k be some number such that MAX CSP(F |D′)−k is APX-complete.
We establish an L-reduction from MAX CSP(F |D′)−k to MAX CSP(F)−k ′ where
k ′ = 2k.

An instance I of MAX CSP(F |D′) − k corresponding to f (x1, . . ., xn) =∑q
i=1 fi (xi) will be mapped to an instance I ′ corresponding to f ′(x1, . . ., xn) =∑q
i=1 f ′

i (xi) + k
∑n

i=1 uD′(xi) where each f ′
i ∈ F is such that f ′

i |D′ = fi . We may
without loss of generality assume that all n variables xi actually appear in constraint
scopes in I. Note that I ′ is indeed an instance of MAX CSP(F) − k ′.

Let V = {x1, . . ., xn} and fix an element d ∈ D′. If ϕ′ : V → D is a solution
to I ′, then it is modified to a solution to I as follows: set ϕ(xi) = d whenever
ϕ′(xi) 	∈ D′, and ϕ(xi) = ϕ′(xi) otherwise.

We will show that this pair of mappings is an L-reduction for suitable α and β.
Note that, for any solution to I ′, changing all values outside of D′ to any values

in D′ can only increase the cost of the solution. This follows from the fact that,
by changing any value outside of D′ to a value in D′, we can lose at most k
satisfied constraints, but we satisfy k constraints of the form uD′(x). It follows that
Opt(I ′) = Opt(I) + kn.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:10 V. DEINEKO ET AL.

Let a be the maximum arity of constraints in F |D′ . Let c = 1
|D|a . Then we have

c · q ≤ Opt(I) by Lemma 2.3 (recall that q is the number of constraints in I). Set
α = ak

c +1. Note that we have n ≤ aq because the total length of constraint scopes

in I is at least n and at most aq. Since n ≤ aq ≤ aOpt(I)

c , we have

Opt(I ′) = Opt(I) + kn ≤ Opt(I) + k
aOpt(I)

c
= α · Opt(I),

so the first property of an L-reduction is satisfied.
We will now show that the second property is satisfied with β = 1. Let ϕ′ and ϕ

be solutions to I ′ and I, respectively, such as described above.
Let V1 be the set of variables which ϕ′ sends to D \ D′, and V2 the variables sent

to D′; set r = |V2|. Divide all constraints in I ′ into three pairwise disjoint groups:
C1 consists of all constraints fi (xi) that contain at least one variable from V1, C2

of all constraints fi (xi) that use variables only from V2, and C3 contains the kn
constraints of the form uD′(xi). Let q1 = |C1|. Furthermore, let s1 and s2 be the
numbers of constraints in C1 and C2, respectively, that are satisfied by ϕ′. By the
bounded occurrence property, we have s1 ≤ q1 ≤ (n − r)k. In particular, it follows
that s1 − nk + rk ≤ 0. Note also that cost(ϕ′) = s1 + s2 + rk and s2 ≤ cost(ϕ).
Finally, we have

Opt(I) − cost(ϕ) ≤ Opt(I) − s2 =
[Opt(I) + nk] − [s1 + s2 + rk] + [s1 − nk + rk] ≤ Opt(I ′) − cost(ϕ′).

4. Supermodularity, Monge Properties, and MAX CSP

4.1. BASICS OF SUPERMODULARITY. In this section, we discuss the well-known
combinatorial algebraic property of supermodularity [Topkis 1998] which will play
a crucial role in classifying the approximability of MAX CSP problems.

A partial order on a set D is called a lattice order if, for every x, y ∈ D, there exists
a greatest lower bound x�y and a least upper bound x�y. The corresponding algebra
L = (D, �, �) is called a lattice. For tuples a = (a1, . . ., an), b = (b1, . . ., bn) in
Dn , let a�b and a�b denote the tuples (a1 �b1, . . ., an �bn), (a1 �b1, . . ., an �bn),
respectively.

Definition 4.1. Let L be a lattice on D. A function f : Dn → Z
+ is called

supermodular on L if

f (a) + f (b) ≤ f (a � b) + f (a � b) for all a, b ∈ Dn.

Note that predicates are functions, so it makes sense to consider supermodular
predicates. We say that F ⊆ RD is supermodular on L if every f ∈ F has this
property.

A finite lattice L = (D, �, �) is distributive if and only if it can be represented
by subsets of a set A, where the operations � and � are interpreted as set-theoretic
intersection and union, respectively. Totally ordered lattices, or chains, will be of
special interest in this article. Note that, for chains, the operations � and � are
simply min and max. Hence, the supermodularity property for an n-ary function f

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:11

FIG. 1. A list of predicates on {0, 1, 2, 3} that are supermodular on the chain 0 < 1 < 2 < 3. The
predicates are represented by tables of values.

on a chain is expressed as follows:

f (a1, . . ., an) + f (b1, . . ., bn)

≤ f (min(a1, b1), . . ., min(an, bn)) + f (max(a1, b1), . . ., max(a1, b1))

for all a1, . . ., an, b1, . . ., bn .

Example 4.2.

(1) The disequality predicate neqD is not supermodular on any chain on D. Take
two elements d1, d2 ∈ D such that d1 < d2. Then

neqD(d1, d2) + neqD(d2, d1) = 2 	≤ 0 = neqD(d1, d1) + neqD(d2, d2).

(2) Fix a chain on D and let a, b be arbitrary elements of D2. Consider the binary
predicate fa, f b and f b

a defined by the rules

fa(x, y) = 1 ⇔ (x, y) ≤ a,

f b(x, y) = 1 ⇔ (x, y) ≥ b,

f b
a (x, y) = 1 ⇔ (x, y) ≤ a or (x, y) ≥ b,

where the order on D2 is component-wise. It is easy to check that every predicate
defined above in this part of the example is supermodular on the chain. Note that
such predicates were considered in Cohen et al. [2005] where they were called
generalized 2-monotone. We will see later in this subsection (Lemma 4.4) that
such predicates are generic supermodular binary predicates on a chain.

We will now make some simple, but useful, observations.

OBSERVATION 4.3.

(1) Any chain is a distributive lattice.
(2) Any unary predicate on D is supermodular on any chain on D.
(3) A predicate is supermodular on a chain if and only if it is supermodular on its

dual chain (obtained by reversing the order).

Given a chain in D, any binary function f on D can be represented as a |D|×|D|
matrix M such that M(x, y) = f (x, y); here, the chain indicates the order of indices
of M , and M(x, y) is the entry in row x and column y of M . Note that this matrix is
essentially the table of values of the predicate. For example, some binary predicates
on D = {0, 1, 2, 3} that are supermodular on the chain 0 < 1 < 2 < 3 are listed in
Figure 1 (these predicates will be used later in the proof of Theorem 6.3). Note that

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:12 V. DEINEKO ET AL.

all predicates in Figure 1 have the form described in Example 4.2(2). For example,

h2 is f (3,3)
(0,1) and h17 is f (1,3)

(2,1) .

A square matrix M is called anti-Monge (or a-Monge, for short)2 if M(i, s) +
M(r, j) ≤ M(i, j) + M(r, s) for all i < r and j < s. It is well known (and easy
to check) that matrices corresponding to binary supermodular functions on a chain
are precisely the a-Monge matrices (see, e.g., Observation 6.1 in Burkard et al.
[1996]). Hence, one can view the tables in Figure 1 as a-Monge matrices. We will
be particularly interested in binary supermodular predicates on chains, and the next
result describes the structure of 0-1 a-Monge square matrices.

In order to make the correspondence between matrices and binary functions
more transparent, we will use the set J = {0, . . ., n − 1} to number rows and
columns of an n × n matrix. Let L pq

n denote the square 0-1 matrix of size n such
that L pq

n (i, j) = 1 if and only if i ≤ p and j ≤ q. Similarly, Rst
n denotes the square

0-1 matrix of size n such that Rst
n (i, j) = 1 if and only if i ≥ s and j ≥ t . Let U

and W be two subsets of J . We denote by M[U, W] the |U |× |W | submatrix of M
that is obtained by deleting all rows not contained in U and all columns not in W .
Expression M[U, W] = a will mean that all elements in the submatrix are equal
to a.

The following result is a direct corollary of Lemma 2.3 of Burkard et al. [1996].

LEMMA 4.4. A non-zero 0-1 matrix M of size n × n without all-ones rows and
columns is an a-Monge matrix if and only if one of the following holds

—M = L pq
n , for some 0 ≤ p, q ≤ n − 2, or

—M = Rst , for some 1 ≤ s, t ≤ n − 1, or
—M = L pq

n + Rst
n for some 0 ≤ p, q ≤ n − 2 and 1 ≤ s, t ≤ n − 1, with p < s,

or q < t , or both.

The family of n-ary supermodular functions on a chain was also studied under
the name of n-dimensional anti-Monge arrays [Burkard et al. 1996]. As a special
case of Lemma 6.3 of Burkard et al. [1996], we have the following result (see also
Observation 6.1 of Burkard et al. [1996]).

LEMMA 4.5. An n-ary, n ≥ 2, function f is supermodular on a fixed chain if
and only if the following holds: every binary function obtained from f by replacing
any given n − 2 variables by any constants is supermodular on this chain.

4.2. SUPERMODULARITY AND MAX CSP. The property of supermodularity has
been used to classify the approximability of problems MAX CSP(F) for small sets
D (though, originally the classification for the case |D| = 2 was obtained and
stated in Creignou [1995], Creignou et al. [2001], and Khanna et al. [2001] without
using this property). To make use of results in Cohen et al. [2005] and Jonsson et al.
[2006], we need to introduce some more notation.

Definition 4.6. An endomorphism of F is a unary operation μ on D such that,
for all f ∈ F and all (a1, . . ., am) ∈ Dm , we have

f (a1, . . ., am) = 1 ⇒ f (μ(a1), . . ., μ(am)) = 1.

2 Other names used for such matrices are inverse Monge and dual Monge.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:13

We will say that F is a core if every endomorphism of F is injective (i.e., a
permutation).

If μ is an endomorphism of F with a minimal image im(μ) = D′, then a core
of F , denoted core(F), is the set F |D′ .

The intuition here is that if F is not a core then it has a non-injective endomor-
phism μ, which implies that, for every assignment ϕ, there is another assignment
μϕ that satisfies all constraints satisfied by ϕ and uses only a restricted set of values,
so the problem is equivalent to a problem over this smaller set. As in the case of
graphs, all cores of F are isomorphic, so one can speak about the core of F . Note
that any set of the form F ∪ CD is a core.

THEOREM 4.7 ([COHEN ET AL. 2005; JONSSON ET AL. 2006]). Let |D| ≤ 3
and letF ⊆ RD be a core. IfF is supermodular on some chain on D, then weighted
MAX CSP(F) belongs to PO. Otherwise, MAX CSP(F) is APX-complete.

Remark 4.8. It was shown in Lemma 5.37 of Creignou et al. [2001] that, for
D = {0, 1}, F ⊆ R{0,1} can strictly implement neq2 whenever MAX CSP(F)
is APX-complete in the above theorem (i.e., whenever F is a core that is not
supermodular on any chain). Moreover, it follows from (the proof of) Theorem 3
of Jonsson et al. [2006] that if |D| = 3 and F is not supermodular on any chain
on D then F ∪ CD can express neq2 or neq3 by using a sequence of the following
operations:

—adding to F a predicate that can be strictly implemented from F
—taking the core of a subset of F .

It was shown in Alimonti and Kann [2000] that MAX CUT remains APX-complete
even when restricted to cubic graphs. Since MAX CUT is the same problem as
MAX CSP({neq2}) (see Example 2.5), it follows that MAX CSP({neq2}) − B is
APX-complete. Moreover, since neqk |{0,1} = neq2, it follows from Lemma 3.5 that
MAX CSP({neqk, u{0,1}})− B is APX-complete for any k. Therefore, we obtain the
following corollary by combining Remark 4.8 with Lemmas 3.4 and 3.5.

COROLLARY 4.9. Let |D| ≤ 3 and F not supermodular on any chain on D.
Then the problem MAX CSP(F ∪ UD) − B is APX-complete.

The tractability part of our classification is contained in the following result:

THEOREM 4.10 ([COHEN ET AL. 2005; IWATA ET AL. 2001; SCHRIJVER 2000]).
IfF is supermodular on some distributive lattice on D, then weighted MAX CSP(F)
is in PO.

5. Permuted a-Monge Matrices

In this section, we prove results about a-Monge matrices that will imply, via the
correspondence between binary supermodular predicates on chains and a-Monge
matrices, the following result.

THEOREM 5.1. If F is a set of binary predicates that is not supermodular on
any chain on D, then there exist F ′ ⊆ F with |F ′| ≤ 3 and D′ ⊆ D with |D′| ≤ 4
such that F ′|D′ is not supermodular on any chain on D′.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:14 V. DEINEKO ET AL.

We prove this theorem in two steps: the existence of D′ is established in
Section 5.1 (see Corollary 5.4) and the existence of F ′ in Section 5.2 (see
Proposition 5.7). Our results about matrices will be more general than required
to prove Theorem 5.1 because we will consider general (i.e., not necessarily 0-1)
matrices.

First, we need to introduce some concepts and notation. Let M be an n × n
matrix. If there is a permutation π that simultaneously permutes rows and columns
of M so that the resulting matrix is an a-Monge matrix, then the matrix M is called
a permuted a-Monge matrix and the permutation is called an a-Monge permutation
for M . Note that we will often use the term “permutation” as a synonym for “linear
(re-)ordering”. Given a set of indices I = {i1, . . ., ik} ⊆ J = {0, . . ., n−1}, we use
notation M[I] for the sub-matrix M[I, I]. We say that M[I] is permuted according
to a permutation 〈s1, . . ., sk〉, where I = {s1, . . ., sk}, if row (column) s1 is the first
row (column) in the permuted matrix, s2 is the second row (column), and so on.
If n ≤ 4 and M is not a permuted a-Monge matrix, then we say that M is a bad
matrix.

A row i precedes a row j in M (i ≺ j for short), if row i occurs before row j in M .
If i precedes j in a permutation π , then we write i ≺π j . When the permutation π is
understood from the context, we simply write i ≺ j . If π is an a-Monge permutation
for the matrix M , then the reverse of π , π− defined as π−(i) = π (n − 1 − i), is
also an a-Monge permutation. Therefore, given two indices i and j , we can always
assume that i precedes j in an a-Monge permutation (if there is any).

Denote by 	(i, j, k, l), for i, j, k, l ∈ J , an algebraic sum that involves four
entries of the matrix M : 	(i, j, k, l) = M(i, k) + M(j, l) − M(i, l) − M(j, k).
Given a permutation π for permuting rows and columns in M , we use a similar
notation for the sums in the permuted matrix: 	(i, j, k, l, π) = M(π (i), π (k)) +
M(π(j), π (l)) − M(π (i), π (l)) − M(π (j), π (k)). For k = i and l = j , we use
simplified notation 	(i, j) = 	(i, j, i, j), for i, j ∈ J . Matrix M is an a-Monge
matrix if and only if 	(i, j, k, l) ≥ 0 for all i < j and k < l, and M is permuted
a-Monge if and only if there exists a permutation π such that 	(i, j, k, l, π) ≥ 0
for all i < j and k < l. It is easy to check that

	(i, j, k, l) =
∑

s=i,..., j−1;t=k,...,l−1

	(s, s + 1, t, t + 1). (1)

Therefore, given a permutation π and matrix M , it can be checked in O(n2) time
whether π is an a-Monge permutation for the matrix M .

We will often use the following equalities (which are direct consequences of
equation (1)):

	(i, j, k, l) = 	(i, s, k, l) + 	(s, j, k, l) and

	(i, j, k, l) = 	(i, j, k, s) + 	(i, j, s, l)

We will say that row (column) s is equivalent to row (respectively, column) t ,
if 	(s, t, k, l) = 0 (respectively, 	(k, l, s, t) = 0) for all k, l. It can easily be
shown that if rows s and t are equivalent, then M(s, i) = M(t, i) + αst , for all i
and some constant αst . Hence, after subtracting αst from all elements in the row s
(M ′(s, i) = M(s, i) −αst), one gets two identical rows s and t (M ′(s, i) = M ′(t, i)
for all i). A matrix with all rows (and all columns) equivalent is called a sum matrix:
It can be shown that in this case M(s, t) = us + vt , for some real vectors u and v .
Clearly, any sum matrix is a-Monge.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:15

FIG. 2. Schematic representation of submatrices and algebraic sums 	.

5.1. REDUCING THE SIZE OF MATRICES. We will first show that whenever an
n ×n matrix M is not a permuted a-Monge matrix, then there exists a set of indices
B with |B| ≤ 4 such that M[B] is a bad matrix. Our approach to the recognition
of bad matrices is loosely based on the COM (Construct partial Orders and Merge
them) algorithm, suggested in Deineko et al. [1994]. This algorithm constitutes a
general approach to deciding whether a given matrix, possibly with some unknown
elements, can be permuted to avoid a special set of 2 × 2 submatrices. In our case,
these are submatrices M[{i, j, k, l}] with 	(i, j, k, l) < 0.

We will use the idea of the COM algorithm, which goes as follows: given a
matrix M , we try to construct an a-Monge permutation for it. We start with a
pair of indices (i, j) which correspond to two non-equivalent rows or columns in
the matrix. We assume further that the index i precedes index j in an a-Monge
permutation π . The assumption i ≺π j determines the order of some other indices.
Under the assumption that i ≺π j , the strict inequality 	(i, j, k, l) > 0 indicates
that k ≺π l, while the strict inequality 	(i, j, k, l) < 0 indicates that l ≺π k. (Note
that 	(i, j, k, l) = −	(i, j, l, k) = −	(j, i, k, l) = 	(j, i, l, k) – this property
will often be used in our proofs). The obtained information can be conveniently
represented as a directed graph PM with nodes J and directed arcs corresponding
to the identified precedence constraints together with the initial constraint i ≺π j .
We then extend PM recursively to obtain additional information about the ordering
of indices. Eventually, either PM contains an oriented cycle which signals that the
matrix is not a permuted a-Monge matrix, or we can view PM as a partial order.
This order defines a set of permutations (i.e., linear extensions of PM) which are
our candidates for an a-Monge permutation. We illustrate the COM approach with
the following example.

Example 5.2. Consider a submatrix M[{i, k, j}]. Schematic representation of
this submatrix and algebraic sums 	 is shown in Figure 2. We claim that, provided
	(i, j) = 	(i, k) = 	(k, j) = 0, the submatrix is either a bad matrix or a sum
matrix.

It follows from 	(i, j) = 	(i, k) + 	(i, k, k, j) + 	(k, j, i, k) + 	(k, j) =
0 that 	(k, j, i, k) = −	(i, k, k, j). Suppose that 	(k, j, i, k) 	= 0 and
	(i, k, k, j) 	= 0. Without loss of generality, suppose that i ≺ k in an a-Monge
permutation and that 	(i, k, k, j) > 0. The assumption that row i precedes row
k, together with the inequality 	(i, k, k, j) > 0 yields k ≺ j . The assumption
that column i precedes column k together with the inequality 	(k, j, i, k) <
0 yields a contradictory precedence j ≺ k. Therefore, M[{i, j, k}] is a bad
matrix.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:16 V. DEINEKO ET AL.

If 	(k, j, i, k) = 0 and 	(i, k, k, j) = 0, then it can easily be shown that
M[{i, j, k}] is a sum matrix.

We recommend the reader to use diagrams like the one in Figure 2 in the following
proof, since they make arguments more transparent.

THEOREM 5.3. If an n × n matrix M is not a permuted a-Monge matrix, then
there exists a set of indices B with |B| ≤ 4, such that M[B] is a bad matrix.

PROOF. We can without loss of generality assume that M has no pair s, t of
indices such that both rows s, t are equivalent and columns s, t are equivalent.
Indeed, if s, t is such a pair then it is easy to see that M is permuted a-Monge if
and only if M[J \ {s}] is permuted a-Monge, so we can delete row s and column s
and continue.

First note that if there exists a pair i, j such that i 	= j and 	(i, j) < 0, then
M[{i, j}] is a bad matrix, so we assume further on that 	(i, j) ≥ 0 for all distinct
i, j .

Assume that 	(i, j) = 0 for all i, j . Suppose that there exists a triple i, j, k
such that 	(k, j, i, k) 	= 0 and/or 	(i, k, k, j) 	= 0. Then, as shown in the example
above, M[{i, j, k}] is a bad matrix in this case. Suppose instead that	(k, j, i, k) = 0
and 	(i, k, k, j) = 0 for all i, k, j . For any s, t, k, l with s, t < k, l, we have
	(s, t, k, l) = 	(s, t, t, l) − 	(s, t, t, k), and therefore 	(s, t, k, l) = 0. For any
s, t, k, l with s, t > k, l, we have 	(s, t, k, l) = 	(s, t, k, s) − 	(s, t, l, s), and
therefore 	(s, t, k, l) = 0. It can be shown in a similar way that 	(s, t, k, l) = 0
for all s, t, k, l, and therefore M is a sum matrix, which is impossible because M
is not permuted a-Monge.

Assume now that maxk,l 	(k, l) > 0. We will try to construct an a-Monge
permutation for M , and show that such an effort unavoidably results in the iden-
tification of a bad submatrix in M . If M were a permuted a-Monge matrix, then
there would exist indices i
, j
 and an (a-Monge) permutation π with π (i
) = 0
and π (j
) = n −1 such that 	(i
, j
) = maxk,l 	(k, l) (see equation (1)), and also
	(i
, j
, j, j +1, π) ≥ 0 and 	(j, j +1, i
, j
, π) ≥ 0 for all j = 0, 1, . . ., n −2.
To simplify the presentation, we assume that i
 = 0 and j
 = n − 1 (otherwise,
we renumber the rows and columns in the matrix). The above inequalities can be
rewritten as M(0, π (j))− M(n −1, π (j)) ≥ M(0, π (j +1))− M(n −1, π (j +1))
and M(π (j), 0) − M(π (j), n − 1) ≥ M(π (j + 1), 0) − M(π (j + 1), n − 1) for
j = 0, 1, . . ., n − 2.

So, an a-Monge permutation π would sort the differences (M(0, i)−M(n−1, i))
and the differences (M(i, 0) − M(i, n − 1)), i 	= 0, n − 1 in nonincreasing order. If
there exists no permutation that sorts both sequences, then there is a pair i, j such
that M(0, i) − M(n − 1, i) < M(0, j) − M(n − 1, j) (which yields the precedence
constraint i ≺ j) and M(i, 0)− M(i, n −1) > M(j, 0)− M(j, n −1) (which yields
the precedence constraint j ≺ i). This implies that matrix M[{0, n − 1, i, j}] is a
bad matrix.

Suppose now that 	(0, n − 1) = maxk,l 	(k, l) and there exists a permutation
π , with π (0) = 0 and π (n − 1) = n − 1, that sorts both sequences. Fix such
a permutation and permute M according to it. We can without loss of generality
assume that M had this new form from the very beginning, that is, both the sequence
(M(0, i) − M(n − 1, i)) and the sequence (M(i, 0) − M(i, n − 1)), i 	= 0, n − 1,
are already in nonincreasing order.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:17

Since M is not permuted a-Monge, we still have indices p, q, s, t such that p < q,
s < t , and 	(p, q, s, t) < 0. It follows from the inequality 	(p, q, s, t) < 0 and
from Eq. (1) that there exists an index i with p ≤ i ≤ q − 1, and an index k with
s ≤ k ≤ t − 1, such that 	(i, i + 1, k, k + 1) < 0. We consider the case i < k: the
case i = k is already eliminated and the case i > k is symmetric.

Assume that there exist indices i and k with i + 1 < k satisfying the conditions
	(i, i +1, k, k +1) < 0, 	(i, i +1, i +1, k) > 0, and 	(i +1, k, k, k +1) > 0. We
claim that M[{i, i +1, k, k +1}] is a bad matrix in this case. Indeed, the assumption
i ≺ i + 1 yields i + 1 ≺ k and k + 1 ≺ k, and constraint k + 1 ≺ k for the columns
k and k + 1 yields k ≺ i + 1. This proves the claim.

Assume now that there is no pair of indices i, k with i + 1 < k such that
	(i, i + 1, k, k + 1) < 0, 	(i, i + 1, i + 1, k) > 0, and 	(i + 1, k, k, k + 1) > 0.
We claim that then there exists a triple of indices i, j, l with i < j < l such that
	(i, j, j, l) < 0. Indeed, we know that we have a pair of indices i, k with i < k
such that 	(i, i + 1, k, k + 1) < 0. If i + 1 = k, then our claim trivially holds with
j = k and l = k + 1. Otherwise, we have i + 1 < k with 	(i, i + 1, i + 1, k) ≤ 0
or 	(i + 1, k, k, k + 1) ≤ 0 (or both). If 	(i, i + 1, i + 1, k) ≤ 0 then 	(i, i +
1, i + 1, k + 1) = 	(i, i + 1, i + 1, k) + 	(i, i + 1, k, k + 1) < 0, so we can take
j = i + 1 and l = k + 1 in our claim. The situation when 	(i + 1, k, k, k + 1) ≤ 0
is treated similarly.

We consider two cases:

Case 1. There exists a triple i < j < l with 	(i, j, j, l) < 0 such that i = 0 or
l = n − 1, or both.

We consider the case with 	(0, j, j, l) < 0 (the case of 	(i, j, j, n − 1) < 0
is symmetric). We claim that matrix M[{0, j, l, n − 1}] is a bad matrix in this
case. Indeed, rows and columns in the matrix are sorted to guarantee, in par-
ticular, the inequalities 	(0, n − 1, j, l) ≥ 0 and 	(0, j, 0, n − 1) ≥ 0. It fol-
lows from the assumption 	(0, j, j, l) < 0 and the equality 	(0, n − 1, j, l) =
	(0, j, j, l)+	(j, n −1, j, l) that 	(j, n −1, j, l) > 0. So, the assumption 0 ≺ j
yields l ≺ j , and l ≺ j yields n − 1 ≺ j . We will show that then we have a con-
tradiction with the choice of 0 and n − 1 as a pair such that 	(0, n − 1) = maxk,l
	(k, l).

If l = n −1, then there are two permutations of {0, j, n −1} compatible with the
obtained precedence constraints: 〈0, n−1, j〉 and 〈n−1, 0, j〉. If 〈0, n−1, j〉 is an a-
Monge permutation for M[{0, j, n−1}] then 	(0, j) can be represented as a sum of
non-negative numbers (see equality (1)) which include, in particular, 	(0, n−1) and
	(n−1, j) > 0. This is a contradiction with the choice of 0 and n−1. If 〈n−1, 0, j〉
is an a-Monge permutation for M[{0, j, n − 1}] then we get a contradiction in a
similar way, using the fact that 	(0, j) = 	(0, j, 0, n − 1) − 	(0, j, j, n − 1)
> 0.

Assume now l 	= n − 1. This means that 	(0, j, j, n − 1) ≥ 0. Moreover,
since 	(0, j, j, l) < 0 and 	(0, j, j, n − 1) = 	(0, j, j, l) + 	(0, j, l, n − 1),
we also have 	(0, j, l, n − 1) > 0. In addition to the previously stated precedence
constraints 0 ≺ j , l ≺ j , and n −1 ≺ j , the last inequality implies a new constraint
l ≺ n − 1. So we have three possible permutations for permuting the submatrix
M[{0, j, l, n − 1}] to an a-Monge matrix: 〈0, l, n − 1, j〉, 〈l, 0, n − 1, j〉, and
〈l, n − 1, 0, j〉.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:18 V. DEINEKO ET AL.

Assume that 〈0, l, n−1, j〉 is an a-Monge permutation. Then, by Eq. (1), we have

	(0, j) = 	(0, n − 1) + 	(n − 1, j, l, j) + 	(n − 1, j, 0, l)
+ 	(0, n − 1, n − 1, j).

Since the permutation is a-Monge, all numbers in the right-hand side of the above
equality are non-negative. Also, we have 	(n − 1, j, l, j) = 	(j, n − 1, j, l) > 0.
This implies that 	(0, j) > 	(0, n − 1), which is a contradiction with the choice
of 0 and n − 1.

Similarly, if 〈l, 0, n − 1, j〉 is an a-Monge permutation, then there is a represen-
tation of 	(l, j) as a sum of non-negative numbers which again include 	(0, n −1)
and 	(n − 1, j, l, j) > 0. If 〈l, n − 1, 0, j〉 is an a-Monge permutation, then there
is a representation of 	(l, j) which contains 	(0, n − 1) and 	(0, j, l, n − 1) > 0.

Case 2. For any triple i, j, l, i < j < l, with 	(i, j, j, l) < 0, neither i = 0 nor
l = n − 1.

It is easy to see that this condition implies the following inequalities:

	(0, i, j, l) > 0 because, otherwise, 	(0, j, j, l) =
	(0, i, j, l) + 	(i, j, j, l) < 0;

	(i, j, l, n − 1) > 0, since else 	(i, j, j, n − 1) =
	(i, j, j, l) + 	(i, j, l, n − 1) < 0;

	(j, l, l, n − 1) ≥ 0;

	(0, i, i, j) ≥ 0.

We claim that, given the above inequalities, at least one of M[{0, i, j, l}] and
M[{i, j, l, n − 1}] is a bad matrix.

We show first that if 	(j, l) = 0, then M[{0, i, j, l}] is the bad matrix. Indeed,
when trying to find an a-Monge permutation for this matrix, the assumption
0 ≺ i yields j ≺ l (since 	(0, i, j, l) > 0) and i ≺ l (since 	(0, i, i, l) =
	(0, i, i, j) + 	(0, i, j, l) > 0). The constraint j ≺ l for the columns yields the
constraint j ≺ i , and, since 	(i, l, j, l) = 	(i, j, j, l)+	(j, l) = 	(i, j, j, l) < 0,
it also yields l ≺ i . The contradictory precedence constraints {l ≺ i, i ≺ l} prove
that M[{0, i, j, l}] is a bad matrix. So, we assume now that 	(j, l) > 0 (the case
	(j, l) < 0 is already eliminated).

By using a similar argument for the matrix M[{i, j, l, n − 1}], we see that that
if 	(i, j) = 0, then this matrix is bad. So we will also assume that 	(i, j) > 0.

We now consider the submatrix M[{0, i, j, l}] and will try to permute it into an a-
Monge matrix. The assumption 0 ≺ i yields j ≺ l, i ≺ l, j ≺ i . Since 	(i, j) > 0,
and so 	(0, j, i, j) = 	(0, i, i, j) + 	(i, j, i, j) > 0, we also have j ≺ 0. This
shows that a permutation other than 〈 j, 0, i, l〉 cannot be an a-Monge permutation
for M[{0, i, j, l}]. By analyzing the matrix M[{i, j, l, n − 1}] in a similar way,
we see that the only potential a-Monge permutation for it is the permutation
〈i, l, n − 1, j〉.

If 〈 j, 0, i, l〉 is an a-Monge permutation for M[{0, i, j, l}] then we must have
	(0, i, j, 0) ≥ 0. Since 	(0, i, i, j) ≥ 0 by the assumption of Case 2, and also
	(0, i) ≥ 0, we have 	(0, i, 0, j) = 	(0, i, 0, i) + 	(0, i, i, j) ≥ 0. However,
	(0, i, 0, j) = −	(0, i, j, 0), which implies that 	(0, i) = 0 and 	(0, i, i, j) = 0.

Moreover, if 〈 j, 0, i, l〉 is an a-Monge permutation for M[{0, i, j, l}] then we have
	(j, i, i, l) ≥ 0, and if 〈i, l, n −1, j〉 is an a-Monge permutation for M[{i, j, l, n −
1}] then 	(i, j, i, l) ≥ 0. But 	(j, i, i, l) = −	(i, j, i, l), so both are equal to 0.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:19

If 〈 j, 0, i, l〉 is an a-Monge permutation for M[{0, i, j, l}] then we must have
	(j, 0, i, l) ≥ 0. We can express 	(j, 0, i, l) as 	(j, 0, i, l) = −	(0, j, i, l) =
−((0, i, i, j) + 	(0, i, j, l) + 	(i, j) + 	(i, j, j, l)). Since 	(0, i, i, j) = 0 and
	(i, j) +	(i, j, j, l) = 	(i, j, i, l) = 0, we get 	(0, i, j, l) = −	(j, 0, i, l) ≤ 0.
However, the inequality 	(0, i, j, l) > 0 is one of the four inequalities (see above)
directly implied by the assumption of Case 2. Hence, we get a contradiction which
proves that at least one of the matrices M[{0, i, j, l}] and M[{i, j, l, n − 1}] is a
bad matrix.

This completes the proof of the theorem.

Note that the bound |B| ≤ 4 in the above theorem is tight. Indeed, it can be
straightforwardly checked that the following matrix is not permuted a-Monge,
while any matrix obtained from it by deleting a row and a column (with the same
index) is permuted a-Monge.

⎛
⎜⎜⎝

1 1 0 1

1 1 0 0

0 0 0 0

1 0 0 1

⎞
⎟⎟⎠

We can now generalize Theorem 5.3 to the case of several matrices.

COROLLARY 5.4. Let M1, . . ., Mm be n × n matrices. If there exists no permu-
tation that simultaneously permutes all these matrices into a-Monge matrices, then
there exists a subset of indices B with |B| ≤ 4, such that no permutation of the
indices in B simultaneously permutes matrices M1[B], . . ., Mm[B] into a-Monge
matrices.

PROOF. Consider the matrix M = ∑m
i=1 Mi . If M is not a permuted a-Monge

matrix then, by Theorem 5.3, there exists a subset of indices B with |B| ≤ 4, such
that M[B] is a bad matrix. Consider matrices M1[B], . . ., Mm[B]. If there existed a
permutation that permutes all these matrices into a-Monge matrices, then the sum
of the permuted matrices, which is M[B], would be a permuted a-Monge matrix as
well. This contradiction proves that there exists no permutation that simultaneously
permutes matrices M1[B], . . ., Mm[B] into a-Monge matrices.

Assume now that M is a permuted a-Monge matrix. The corresponding a-Monge
permutation does not permute all of M1, . . ., Mm into a-Monge matrices. Hence,
there exist indices i, j, k, l and a pair of matrices, say, M1 and M2 such that
M1(i, k)+ M1(j, l)− M1(i, l)− M1(j, k) > 0 and M2(i, k)+ M2(j, l)− M2(i, l)−
M2(j, k) < 0. This implies that the matrices M1[{i, j, k, l}] and M2[{i, j, k, l}]
cannot be simultaneously permuted into a-Monge matrices – this follows from the
fact that the assumption i ≺ j implies k ≺ l for M1 and l ≺ k for M2.

5.2. REDUCING THE NUMBER OF MATRICES. We will now prove the bound
|F ′| ≤ 3 in Theorem 5.1, again via a-Monge matrices. In the proof, we will use
special partial orders which we call multipartite partial orders.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:20 V. DEINEKO ET AL.

We say that a partial order � on a set D is multipartite if and only if there is a
partition of D = D1 ∪ · · · ∪ Dt , t ≥ 2, such that d � d ′ if and only if d = d ′
or else d ∈ Di and d ′ ∈ D j for some 1 ≤ i < j ≤ t . If P is a multipartite
order, then we will call the classes D1, . . ., Dt the corresponding partition classes
of P .

It is clear that if π is an a-Monge permutation for a matrix M then the reverse
permutation π− is also an a-Monge permutation for M . It is also clear that if M
is an a-Monge matrix with at least three rows, and the matrix obtained from M
by simultaneously swapping rows s and t and columns s and t is again a-Monge
then rows s and t are equivalent, that is, M(s, i) = M(t, i) + αst , and columns s
and t are equivalent as well. Note that swapping of equivalent rows and columns
does not affect the property of being a-Monge. A matrix M is called Monge if −M
is a-Monge. It is shown in Observation 3.6 of Rudolf [1994] that if M is Monge,
i ≺ j ≺ k in M , and rows (columns) i, k are equivalent in M then row j is equivalent
to these rows (columns). Clearly, the statement is also true for a-Monge matrices.
Theorem 3.9 of Rudolf [1994] states that if a Monge matrix has no equivalent rows
or columns then the only way to permute it to a Monge matrix is by using either
the identity permutation id or its reverse id−.

This leads to the following characterization of a-Monge permutations in terms of
multipartite orders. For every anti-Monge square matrix M , there exist two mutually
reverse multipartite orders such that a permutation (i.e., ordering) of the indices
of M is an a-Monge permutation if and only if this ordering is an extension of
one of the two multipartite orders. Two indices i, j belong to the same partition
class of such a multipartite order if and only if both rows i, j and columns i, j are
equivalent in M .

We will now prove two auxiliary lemmas about multipartite orders.

LEMMA 5.5. For any two multipartite orders P ′ and P ′′ on D, there are a, b ∈
D such that a and b are comparable (not necessarily in the same direction) both
in P ′ and in P ′′.

PROOF. Take a maximal chain in P ′. If it is not entirely contained in a class of
P ′′ then there are two elements in this chain belonging to two different classes of
P ′′, that is, these elements are comparable both in P ′′ and in P ′. If all elements in
the maximal chain are contained in the same class of P ′′, then pick any element
d in a different class of P ′′. This element is comparable, in P ′′, with all elements
from the chain, and, clearly, it is comparable with at least one of these elements in
P ′.

Let us say that a collection P = {P1, . . ., Pl} of multipartite orders is conflicting
if their union (considered as a digraph GP) contains a directed cycle.

LEMMA 5.6. If a collection P = {P1, . . ., Pl} is conflicting, then the digraph
GP contains arcs (a, b) and (b, a) for some distinct a, b.

PROOF. Let a1, . . ., at , a1 be a shortest directed cycle in GP , and assume, for
contradiction, that t > 2. Without loss of generality, let (a1, a2) ∈ P1. In this case,
(a2, a3) 	∈ P1, since, otherwise, we would have (a1, a3) ∈ P1 and get a shorter
cycle. Without loss of generality, assume that (a2, a3) ∈ P2. Since the order P1 is
multipartite, we conclude that a1 and a3 are comparable in P1. Furthermore, since
we cannot have (a1, a3) ∈ P1, we have (a3, a1) ∈ P1. Since (a1, a2) ∈ P1, the

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:21

transitivity of P1 implies that (a3, a2) ∈ P1, which, together with (a2, a3) ∈ P2,
gives us the required arcs.

PROPOSITION 5.7. Let U = {M1, . . ., Mm} be a set of matrices of size n × n
such that no permutation is an a-Monge permutation for all matrices in U. Then,
there is a subset U ′ ⊆ U such that |U ′| ≤ 3 and no permutation is an a-Monge
permutation for all matrices in U ′.

PROOF. We may assume that every matrix in U is a permuted a-Monge matrix,
since, otherwise, the result follows immediately. Start with matrix M1 ∈ U and
choose any of the two multipartite orders that describe the set of corresponding
a-Monge permutations for M1. Call this order P1. By Lemma 5.5, there is a pair
(a, b) ∈ P1 such that a 	= b and a and b are comparable in P2, where P2 is the
multipartite order for M2. We may assume that (a, b) ∈ P2, since, otherwise, the
other multipartite order for P2 would be chosen.

If there is a pair of distinct elements (c, d) such that (c, d) ∈ P1 and (d, c) ∈ P2,
then there exists no a-Monge permutation for M1 and M2 and the proposition is
proved. So we may assume that {P1, P2} is not conflicting. Since P1 shares a pair of
comparable elements with any multipartite order, we can in the same way choose
a multipartite order Pi for each matrix Mi . If, for some i , the pair {P1, Pi } is
conflicting, then the proposition is proved. So assume that all such pairs of orders
are non-conflicting. Note that if we chose the other multipartite order for M1, this
would have led to choosing the other multipartite orders for all M1, . . ., Mm .

Since there is no common a-Monge permutation for all of M1, . . ., Mm , we know
that the collection {P1, . . ., Pm} of orders that we have constructed is conflicting.
By Lemma 5.6, there are orders Pi and Pj such that, for some distinct e, f , we
have (e, f) ∈ Pi and (f, e) ∈ Pj . Since both Pi and Pj share with P1 some pairs of
elements comparable in the same direction, we conclude that there is no common
a-Monge permutation for M1, Mi , M j . This completes the proof.

Note that the bound |U ′| ≤ 3 in the above proposition is tight. Indeed, each of the
following three matrices is permuted a-Monge, every two of them have a common
a-Monge permutation, but there is no common a-Monge permutation for all three
of them ⎛

⎝1 0 0

0 0 0

0 0 0

⎞
⎠

⎛
⎝0 0 0

0 1 0

0 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 0

0 0 1

⎞
⎠ .

6. Main Result

We will need the following two technical lemmas. They will be used in our hardness
proof to reduce the argument to the case when all nonunary predicates are binary
and their matrices do not contain all-ones rows or columns.

LEMMA 6.1. If F is not supermodular on any chain on D, then F ∪ UD can
strictly implement a collection F ′ of binary predicates that is is not supermodular
on any chain on D.

PROOF. Let f ∈ F be not supermodular on some fixed chain. By Observa-
tion 4.3(2), f is n-ary with n ≥ 2. By Lemma 4.5, it is possible to substitute

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:22 V. DEINEKO ET AL.

constants for some n − 2 variables of f to obtain a binary predicate f ′ which is not
supermodular on this chain. Assume without loss of generality that these variables
are the last n − 2 variables, and the corresponding constants are d3, . . ., dn , that is,
f ′(x, y) = f (x, y, d3, . . ., dn). Then the following is a strict (n−1)-implementation
of f ′:

f ′(x, y) + (n − 2) = max
z3,...,zn

[f (x, y, z3, . . ., zn) + u{d3}(z3) + · · · + u{dn}(zn)].

Repeating this for all chains on D, one can strictly implement a collection F ′ of
binary predicates that is not supermodular on any chain.

LEMMA 6.2 (LEMMA 3.3 [JONSSON ET AL. 2006]). Assume that h ∈ R(2)
D and

there is a ∈ D such that h(x, a) = 1 for all x ∈ D. Let h′(x, y) = 0 if y = a and
h′(x, y) = h(x, y) if y 	= a. Then, the following holds:

(1) for any chain on D, h and h′ are supermodular (or not supermodular) on the
chain simultaneously;

(2) the problems MAX CSP({h} ∪ UD) and MAX CSP({h′} ∪ UD) are AP-reducible
to each other.

Recall that all predicates fromCD are supermodular on any chain on D. Moreover,
it is shown in (the proof of) Lemma 5.1 of Cohen et al. [2005] that all predicates
from CD are supermodular on a lattice if and only if the lattice is a chain.

We will now prove our main result:

THEOREM 6.3. If F is supermodular on some chain on D, then the weighted
problem MAX CSP(F ∪ CD) belongs to PO. Otherwise, MAX CSP(F ∪ CD) − B
is APX-complete.

PROOF. The tractability part of the proof follows immediately from
Theorem 4.10 (see also Observation 4.3(1)). By Lemmas 3.2 and 3.4, it is suf-
ficient to prove the hardness part for sets of the form F ∪ UD. We will show that
{neq2} can be obtained from F ∪ UD by using the following two operations:

(1) replacing F ∪ UD by a subset of F ∪ UD ∪ { f } where f is a predicate that can
be strictly implemented from F ∪ UD;

(2) replacing F ∪ UD by a subset of F |D′ ∪ UD′ for some D′.

By Example 2.5 and Lemmas 3.4 and 3.5, this will establish the result.
It follows from Lemmas 6.1 and 3.4 that it is sufficient to prove the hardness

part of Theorem 6.3 assuming that F contains only binary predicates. Now, The-
orem 5.1 and Lemma 3.5 imply that, in addition, we can assume that |F | ≤ 3
and |D| ≤ 4. Note that the case |D| ≤ 3 is already considered in Corollary 4.9
(see also Remark 4.8), so it remains to consider the case |D| = 4; we can without
loss of generality assume in the rest of the proof that D = {0, 1, 2, 3}. More-
over, due to Lemma 3.5, we may consider only sets F satisfying the following
condition:

for any proper subset D′ ⊂ D, F |D′ is supermodular on some chain on D′. (∗)

We can assume that F is minimal with respect to inclusion, that is, every proper
nonempty subset of F is supermodular on some chain on D. We will consider three
cases depending on the number of predicates in F . Note that, by Lemma 6.2, we

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:23

FIG. 3. The optimized list of 27 predicates from the proof of Case 1. The predicates are represented
by tables of values.

can without loss of generality assume that none of the predicates in F has a matrix
containing an all-ones row or column (this property does not depend on the order
of indices in the matrix).

We prove the result by using a simple computer-generated enumeration in each
of the three cases. In each case, we first produce a list of all possible sets F with
the above restrictions, then reduce the list by using some obvious symmetries
(such as isomorphism and anti-isomorphism), and, finally, for each remaining set
F , provide a strict implementation of a set F ′ that is known to have an APX-hard
MAX CSP(F ′) problem. To compactly describe such symmetries, we introduce
some notation. Let π be a permutation on D and f a binary predicate on D.
Then, we define π (f) to be the predicate such that π (f)(a, b) = 1 if and only if
f (π (a), π (b)) = 1 for all a, b ∈ D; we say that the predicate π (f) is isomorphic
to f . We also define the predicate f t so that f t (a, b) = 1 if and only if f (b, a) = 1
for all a, b ∈ D (this corresponds to transposing the matrix of f). We say that a
predicate of the form π (f t) is anti-isomorphic to f .

Case 1. |F |=1. First, we use exhaustive search to generate the list of all binary
predicates f on D that (a) do not have all-ones rows or columns, (b) are not
supermodular on any chain on D, and (c)F = { f } satisfies condition (∗). Moreover,
we may consider predicates only up to isomorphism and anti-isomorphism. Thus,
this list is then processed as follows: for every predicate f in the list, in order, remove
all predicates below f in the list that are isomorphic or anti-isomorphic to f .

Clearly, it is sufficient to prove the hardness result for all predicates that remain
in the optimized list. Since there are only 216 = 65536 predicates to check, it
is clear that generating and optimizing the list can easily be (and actually was)
performed by a computer. The optimized list contains only 27 predicates which
are given in Figure 3.

We show, starting from h′
1 and proceeding in order, that {h′

i } ∪ UD strictly
implements some binary predicate g such that either, for some D′ ⊂ D, the
predicate g|D′ is not supermodular on any chain on D′ or g is equal to h′

j for some
j < i (up to isomorphism and anti-isomorphism). These implementations can
be found in Appendix A. This, together with Remark 4.8, implies that neq2 can be
obtained from F ∪ UD.

Case 2. |F | = 2. Let F = { f1, f2}. As in Case 1, we use exhaustive search to
generate the list of all pairs of binary predicates on D such that (a) they do not
have all-ones rows or columns, (b) each of the two predicates is supermodular on

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:24 V. DEINEKO ET AL.

at least one chain, but there is no chain on which they are both supermodular, and
(c) F satisfies condition (∗). Without loss of generality, we can assume that f1

is supermodular on the chain 0 < 1 < 2 < 3, that is, the matrix of f1 with this
order of indices is a-Monge. Since the matrix of f1 does not have all-ones row
or column, its structure is described in Lemma 4.4. Similarly, the matrix of f2 is
a permuted a-Monge matrix, since π (f2) is supermodular for some permutation
π .

We can also assume that the a-Monge matrices for f1 and f2 (with respect to the
orders on which the predicates are supermodular) have the third form (L pq

4 + Rst
4)

from Lemma 4.4. The reason is that if, say, the matrix of f1 has the form L pq
4 for

some 0 ≤ p, q ≤ 2, then f ′
1(x, y)+1 = f1(x, y)+u{p+1,...,3}(x)+u{q+1,...,3}(y) is a

strict 2-implementation of the predicate f ′ whose matrix is R(p+1)(q+1)
4 . Moreover,

f ′′
1 (x, y) = f1(x, y) + f ′

1(x, y) is a strict 1-implementation of a predicate whose

matrix is L pq
4 + R(p+1)(q+1)

4 . Hence, we can replace f1 by f ′′
1 in this pair, and show

the hardness result for { f ′′
1 , f2}.

It is clear that if we prove the result for all pairs (f1, f2) with some fixed f1, then
this also proves the result for all pairs with the first component f t

1 , or π (f1), or π (f t
1)

where π (x) = 3−x . This implies that it is sufficient to consider only predicates from
Figure 1 as possible candidates for f1. Moreover, it can be straightforwardly checked
by using a computer that if f1 is one of the predicates h1, h3, h4, h6, h7, h9, h10

from Figure 1, then F = { f1, f2} fails to satisfy condition (∗). Hence, all pairs
(f1, f2), where at least one of f1 and π (f2) (for some permutation π) coincides
with one of 7 predicates above, will not be on the list of pairs that we need to
consider.

Obviously, if we prove the result for some pair (f1, f2), then this also proves
the result for (f1, f t

2). Hence, provided f2 	= f t
2 , one of these two pairs can be

excluded from the list.
Now we show that predicates h5, h11, h12, and h17 from Figure 1 can also be

excluded from consideration because they can strictly implement some other
predicates from Figure 1. Implementations:

⎧⎪⎪⎨
⎪⎪⎩

f :=
1100

1101

1101

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ UD
s=⇒6

1100

0001

0001

0001

=: g f = h17, g = π (h8) where π (x)=3−x

g(x, y) + 5 = maxz,w [f (z, w) + f (z, y) + f (x, z) + f (x, w) + u{0,3}(z) +
u{3}(w) + u{0}(x)]

⎧⎪⎪⎨
⎪⎪⎩

f :=
1110

1110

0001

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ UD
s=⇒3

1110

1110

0000

0001

=: g f = h11, g = h5

g(x, y) + 2 = maxz[f (z, x) + f (z, y) + f (x, z)]

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:25

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f :=
1110

1110

0000

0001

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪ UD
s=⇒2

1100

1100

1101

0001

=: g f = h5, g = h16

g(x, y) + 1 = maxz[f (x, z) + f (y, z) + u{2}(x)]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f :=
1110

0001

0001

0001

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪ UD
s=⇒4

1000

1001

1001

0001

=: g f = h12, g = h15

g(x, y) + 3 = maxz[f (z, x) + f (z, y) + f (x, z) + f (y, z) + u{1}(z) + u{1,2}(x)]

As above, all pairs (f1, f2) such that, for some permutation π , π (f2) or π (f t
2) is

one of h5, h11, h12, h17, can also be excluded from the list.
Finally, we can exclude from the list all pairs isomorphic to some pair higher

up in the list. That is, we exclude pair (f1, f2) if there is a permutation π such
that either π (f1) = f1 and the pair (f1, π (f2)) is above (f1, f2) in the list or
if there is a permutation π such that the pair (π (f2), π (f1)) is above (f1, f2)
in the list (in the latter case, π (f2) must be supermodular on 0 < 1 < 2
< 3).

The optimized list now contains 27 pairs of predicates. In Appendix B, we
provide strict implementations for them that show that, for each pair (f1, f2) in
this list, { f1, f2} ∪ UD implements either a pair above it in the list or else a binary
predicate g such that, for some D′ ⊂ D, the predicate g|D′ is not supermodular
on any chain on D′. As in Case 1, it follows that neq2 can be obtained from F ∪
UD.

Case 3. |F | = 3. It can be checked by computer-assisted exhaustive search
that there does not exist such a set F . Simply loop through all triples of (not
necessarily distinct) binary predicates on {0, 1, 2} that are supermodular on
the chain 0 < 1 < 2 and check that each possible extension to a triple of
pairwise distinct predicates on D results in a set F satisfying one of the following
conditions:

(1) F is supermodular on some chain on D,

(2) for some D′ ⊂ D, F |D′ is not supermodular on any chain on D′,
(3) some proper subset of F is not supermodular on any chain on D.

Remark 6.4. There are two main ways to represent a predicate: by its com-
plete table of values and by the set of tuples which satisfy the predicate. By using
Lemma 4.5 and Corollary 5.4, it is not hard to show that if the former representation
is used or if D is fixed, then it can be checked in polynomial time whether a given

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:26 V. DEINEKO ET AL.

(finite) F is supermodular on some chain on D. However, if D is not fixed and
the latter representation is used then it is an open question whether there exists
a polynomial-time algorithm for checking supermodularity of F on some chain
on D.

7. Application to LIST H -COLORING Optimization

Recall that a homomorphism from a digraph G = (VG, AG) to a digraph
H = (VH , AH) is a mapping ϕ : VG → VH such that (ϕ(v), ϕ(w)) ∈ AH
whenever (v, w) ∈ AG . In this case, the digraph G is said to be H-
colorable. The GRAPH H -COLORABILITY problem is, given a digraph G, to decide
whether it is H -colorable. This problem attracts much attention in graph theory
[Hell and Nešetřil 2004].

In this section, we consider the case when F consists of a single binary pred-
icate h. This predicate specifies a digraph H such that VH = D and (u, v) is an
arc in H if and only if h(u, v) = 1. Any instance I = (V, C) of CSP({h}) can
be associated with a digraph GI whose nodes are the variables in V and whose
arcs are the scopes of constraints in C . It is not difficult to see that the question
whether all constraints in I are simultaneously satisfiable is equivalent to the ques-
tion whether GI is H -colorable. Therefore, the problem CSP({h}) is precisely the
GRAPH H -COLORABILITY problem for the digraph H . The problems CSP({h} ∪ UD)
and CSP({h} ∪ CD) are equivalent to the LIST H -COLORING and H -RETRACTION

problems, respectively. In the former problem, every vertex of an input digraph G
gets a list of allowed target vertices in H , and the question is whether G has an
H -coloring subject to the list constraints. The latter problem is the same except that
each list contains either one vertex or all vertices of H . These problems also attract
much attention in graph theory [Hell and Nešetřil 2004].

The problem MAX CSP({h} ∪ UD) can then be viewed as the LIST H -COLORING

optimization problem: for every vertex v of an input digraph G, there is a list
Lv ⊆ VH along with a function ρv : Lv → Z

+ that indicates the “score” that a
mapping VG → VH gets if it sends v to a certain vertex (if a mapping sends v to a
vertex outside of Lv then this adds nothing to the “cost” of this mapping). Then the
goal is to maximize the combined “cost” of such a mapping which is obtained by
adding weights of preserved arcs and “scores” from the lists. The “score” functions
ρv arise as the result of the possible presence in C of several weighted constraints of
the form uD′(v) for different D′ ⊆ D and the same v . Thus, Theorem 6.3 in the case
when F = {h} presents a complexity classification of list H -coloring optimization
problems. Digraphs H corresponding to the tractable cases of this problem are
the digraphs that have an a-Monge adjacency matrix under some total ordering on
VH (note that this property of digraphs can be recognized in polynomial time, for
example, by using Theorem 5.3). Such matrices without all-one rows or columns
are described in Lemma 4.4. It remains to note that, as is easy to see, replacing
either some all-zero row or some all-zero columns with all-one ones does not affect
the property of being a-Monge.

We remark that another problem related to optimizing list homomorphisms be-
tween graphs was recently considered in Gutin et al. [2006], in connection with
some problems arising in defence logistics.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:27

Appendix A: Strict Implementations from Case 1

It is assumed throughout that D = {0, 1, 2, 3}. Implementations should be read as
follows:

—the symbol
s=⇒α means “strictly α-implements”;

—U always denotes UD;

—Y = {x, y} is the set of primary variables and Z = {z, w} is the set of auxiliary
variables (see Definition 3.1).

Each implementation produces some predicate g such that either g or π (g),
or π (gc) (for some permutation π) is a predicate for which a strict imple-
mentation has already been found, or else a predicate g such that, for some
D′ ⊂ D, g|D′ is not supermodular on any chain on D′. We will describe the
latter situation by writing, for simplicity, that “g|D′ is bad”. If |D′| = 2, then
one can directly verify that the corresponding matrix is not a-Monge (there is
no need to permute rows and columns). For the case |D′| = 3, one can use
Lemma 4.4 to quickly check that the matrix of g|D′ is not a permuted a-Monge
matrix.

1.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h′
1 :=

1000

0110

1000

0000

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪ U s=⇒2

1000

1110

1000

0000

=: g g|{0,1,3} is bad

g(x, y) + 1 = maxz[h′
1(z, y) + h′

1(x, z) + u{3}(z)]

2.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h′
2 :=

1000

1101

1000

0000

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪ U s=⇒3

1000

1101

1010

0000

=: g g|{0,2,3} is bad

g(x, y) + 2 = maxz[h′
2(z, x) + h′

2(z, y) + h′
2(x, y) + u{3}(z) + u{2}(x)

+ u{2}(y)]

3.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h′
3 :=

1001

0111

1110

1001

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪ U s=⇒4

1000

0111

1110

0001

=: g g|{0,1,3} is bad

g(x, y) + 3 = maxz[h′
3(z, x) + h′

3(z, y) + h′
3(x, y) + u{1,2}(z)]

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:28 V. DEINEKO ET AL.

4.

⎧⎪⎪⎨
⎪⎪⎩

h′
4 :=

1010

0101

1010

1000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1101

0101

1000

0101

=: g g|{0,1,2} is bad

g(x, y) + 3 = maxz,w [h′
4(z, w) + h′

4(z, y) + h′
4(w, x) + u{1,3}(z)]

5.

⎧⎪⎪⎨
⎪⎪⎩

h′
5 :=

1010

0110

0000

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1000

0100

0001

0001

=: g g|{0,1,3} is bad

g(x, y) + 2 = maxz[h′
5(x, z) + h′

5(x, y) + h′
5(y, z) + u{3}(z) + u{2,3}(x) + u{3}(y)]

6.

⎧⎪⎪⎨
⎪⎪⎩

h′
6 :=

1010

0111

1010

1000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1010

0111

1010

1001

=: g g|{0,1,3} is bad

g(x, y) + 3 = maxz[h′
6(x, z) + h′

6(x, y) + h′
6(y, z) + u{2}(z) + u{3}(x) + u{3}(y)]

7.

⎧⎪⎪⎨
⎪⎪⎩

h′
7 :=

1010

0111

1110

1000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1110

0000

0000

1010

=: g g|{2,3} is bad

g(x, y) + 2 = maxz[h′
7(z, y) + h′

7(x, z) + u{0,3}(x)]

8.

⎧⎪⎪⎨
⎪⎪⎩

h′
8 :=

1011

0101

1010

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒6

1010

0000

1010

1011

=: g g|{0,1,3} is bad

g(x, y) + 5 = maxz,w [h′
8(z, w) + h′

8(z, x) + h′
8(z, y) + h′

8(w, x) + u{2}(z) +
u{0}(w) + u{1,3}(x)]

9.

⎧⎪⎪⎨
⎪⎪⎩

h′
9 :=

1011

0111

0010

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1001

0101

0010

1101

=: g g|{0,1,2} is bad

g(x, y) + 2 = maxz[h′
9(z, x) + h′

9(x, y) + h′
9(y, z) + u{3}(z) + u{3}(x) + u{3}(y)]

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:29

10.

⎧⎪⎪⎨
⎪⎪⎩

h′
10 :=

1011

0111

0010

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1011

0111

0010

0000

=: g g = h′
9

g(x, y) + 2 = maxz[h′
10(z, x) + h′

10(z, y) + u{2}(z) + u{0,1}(x)]

11.

⎧⎪⎪⎨
⎪⎪⎩

h′
11 :=

1011

0111

0011

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1000

0100

0000

1100

=: g π (gt) = h′
5

where π (0, 1, 2, 3) = (0, 1, 3, 2)
g(x, y) + 1 = h′

11(x, y) + u{3}(x) + u{0,1}(y)

12.

⎧⎪⎪⎨
⎪⎪⎩

h′
12 :=

1011

0111

0110

1001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

0110

0111

0111

0000

=: g g|{0,1,3} is bad

g(x, y) + 2 = maxz[h′
12(z, y) + h′

12(x, z) + u{1,2}(z)]

13.

⎧⎪⎪⎨
⎪⎪⎩

h′
13 :=

1011

0111

1010

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1011

0101

1010

0000

=: g g = h′
8

g(x, y) + 2 = maxz[h′
13(z, x) + h′

13(x, y) + h′
13(y, z) + u{3}(z) + u{3}(y)]

14.

⎧⎪⎪⎨
⎪⎪⎩

h′
14 :=

1011

0111

1010

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

0001

0111

0000

0001

=: g π (g) = h′
2

where π (0, 1, 2, 3) = (3, 1, 0, 2)
g(x, y) + 2 = maxz[h′

14(z, y) + h′
14(x, z) + u{1,3}(z)]

15.

⎧⎪⎪⎨
⎪⎪⎩

h′
15 :=

1011

0111

1110

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1011

0101

1010

0000

=: g g = h′
8

g(x, y)+3 = maxz[h′
15(x, z)+h′

15(x, y)+h′
15(y, z)+u{0,3}(z)+u{3}(x)+u{3}(y)]

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:30 V. DEINEKO ET AL.

16.

⎧⎪⎪⎨
⎪⎪⎩

h′
16 :=

1011

0111

1110

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1011

0000

1011

0001

=: g g|{0,1,3} is bad

g(x, y) + 3 = maxz[h′
16(z, x) + h′

16(z, y) + h′
16(x, z) + u{0,3}(z)]

17.

⎧⎪⎪⎨
⎪⎪⎩

h′
17 :=

1011

0111

1110

1001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1010

0111

1110

0001

=: g g|{0,1,3} is bad

g(x, y) + 3 = maxz[h′
17(z, x) + h′

17(z, y) + h′
17(x, y) + u{1,2}(z)]

18.

⎧⎪⎪⎨
⎪⎪⎩

h′
18 :=

1011

0111

1110

1101

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒5

1110

0000

1110

1110

=: g g|{1,3} is bad

g(x, y) + 4 = maxz,w [h′
18(z, w) + h′

18(z, y) + h′
18(w, x) + u{1,2}(z) + u{0}(w)]

19.

⎧⎪⎪⎨
⎪⎪⎩

h′
19 :=

1011

1101

1010

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒5

1010

1011

1010

1010

=: g g|{1,3} is bad

g(x, y) + 4 = maxz,w [h′
19(z, w) + h′

19(z, y) + h′
19(x, z) + u{2}(z) + u{2}(w)

+ u{1,3}(x)]

20.

⎧⎪⎪⎨
⎪⎪⎩

h′
20 :=

1100

1101

1000

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1110

1101

1011

0111

=: g π (g) = h′
18

where π (0, 1, 2, 3) = (0, 3, 1, 2)
g(x, y) + 1 = h′

20(x, y) + h′
20(y, x) + u{2,3}(x) + u{2,3}(y)

21.

⎧⎪⎪⎨
⎪⎪⎩

h′
21 :=

1101

0110

0110

1001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒6

1001

1101

0000

1001

=: g g|{0,1,2} is bad

g(x, y) + 5 = maxz,w [h′
21(z, w) + h′

21(z, x) + h′
21(z, y) + h′

21(w, x) + u{3}(z) +
u{0}(w) + u{1,2}(x)]

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:31

22.

⎧⎪⎪⎨
⎪⎪⎩

h′
22 :=

1101

1100

0010

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1000

1110

0010

1010

=: g π (gt) = h′
9

where π (0, 1, 2, 3) = (0, 2, 1, 3)
g(x, y) + 2 = maxz[h′

22(x, z) + h′
22(y, z) + u{2,3}(z) + u{1,3}(x)]

23.

⎧⎪⎪⎨
⎪⎪⎩

h′
23 :=

1101

1110

0000

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1101

1110

0111

1011

=: g π (g) = h′
18

where π (0, 1, 2, 3) = (0, 2, 1, 3)
g(x, y) + 1 = h′

23(x, y) + h′
23(y, x) + u{2,3}(x) + u{2,3}(y)

24.

⎧⎪⎪⎨
⎪⎪⎩

h′
24 :=

1101

1110

0110

1001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒6

1001

1101

0000

1001

=: g g|{0,1,2} is bad

g(x, y) + 5 = maxz,w [h′
24(z, w) + h′

24(z, x) + h′
24(z, y) + h′

24(x, z) + u{3}(z) +
u{3}(w) + u{1,2}(x)]

25.

⎧⎪⎪⎨
⎪⎪⎩

h′
25 :=

1110

1100

0000

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

0000

1101

0001

0001

=: g π (gt) = h′
2

where π (0, 1, 2, 3) = (1, 3, 0, 2)
g(x, y) + 1 = h′

25(x, y) + u{1,2,3}(x) + u{3}(y)

26.

⎧⎪⎪⎨
⎪⎪⎩

h′
26 :=

1110

1100

1010

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

0000

1101

1011

0001

=: g π (g) = h′
9

where π (0, 1, 2, 3) = (1, 2, 3, 0)
g(x, y) + 1 = h′

26(x, y) + u{1,2,3}(x) + u{3}(y)

27.

⎧⎪⎪⎨
⎪⎪⎩

h′
27 :=

1110

1101

1010

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

0110

0101

0010

0111

=: g π (gt) = h′
13

where π (0, 1, 2, 3) = (1, 2, 3, 0)
g(x, y) + 1 = h′

27(x, y) + u{3}(x) + u{1,2,3}(y)

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:32 V. DEINEKO ET AL.

Appendix B: Strict Implementations from Case 2

The rules for reading implementations are the same as in Appendix A. Each imple-
mentation implements some predicate g such that, for some D′ ⊂ D, g|D′ is bad,
or else a pair for which a strict implementation has already been found.

1.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

0000

0000

0001

, f :=
1000

0001

0000

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1000

1101

0000

0101

=: g g|{0,1,2} is bad

g(x, y) + 2 = maxz[f (x, z) + f (y, z) + h(z, x) + u{1}(z) + u{1,2}(x)]

2.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

0000

0000

0001

, f :=
1110

0001

0000

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1000

0001

0000

0001

=: g (h, g) is Pair 1

g(x, y) + 2 = maxz[f (x, z) + h(x, z) + h(y, z) + u{2}(z) + u{1,2}(x)]

3.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

0000

0000

0001

, f :=
1000

1001

1000

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

0101

0000

0000

0101

=: g g|{0,1} is bad

g(x, y) + 3 = maxw,z[f (z, w) + f (y, w) + h(x, z) + u{2}(z) + u{3}(w)]

4.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

0000

0000

0001

, f :=
1010

1010

1010

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1000

1001

1000

0001

=: g (h, g) is Pair 3

g(x, y) + 1 = maxz[f (z, x) + h(y, z) + u{1}(x)]

5.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

0000

0000

0001

, f :=
1010

1011

1010

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1000

1001

1000

0001

=: g (h, g) is Pair 3

g(x, y) + 1 = maxz[f (x, z) + h(y, z)]

6.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

0000

0000

0001

, f :=
1110

0001

1110

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1010

1010

1010

0001

=: g (h, g) is Pair 4

g(x, y) + 2 = maxz[f (z, x) + f (z, y) + f (y, z)]

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:33

7.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

0000

0000

0001

, f :=
1010

1011

1011

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1000

1001

1000

0001

=: g (h, g) is Pair 3

g(x, y) + 1 = f (y, x) + u{1}(x) + u{0,3}(y)

8.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1110

0000

0001

0001

, f :=
1010

0001

0001

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1000

1101

0101

0101

=: g g|{0,1,2} is bad

g(x, y) + 2 = maxz[f (z, y) + f (y, z) + h(x, z) + u{1}(x) + u{1}(y)]

9.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1110

0000

0001

0001

, f :=
1000

0001

1001

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1010

0000

0111

0111

=: g g|{0,1,2} is bad

g(x, y) + 1 = maxz[f (y, z) + h(x, z)]

10.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1110

0000

0001

0001

, f :=
1010

0101

0101

0101

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1010

0001

0001

0001

=: g (h, g) is Pair 8

g(x, y) + 3 = maxz[f (z, y) + f (x, z) + h(z, y) + u{0,3}(z)]

11.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1110

0000

0001

0001

, f :=
1000

0101

1101

0101

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1010

0000

0111

0111

=: g g|{0,1,2} is bad

g(x, y) + 2 = maxz[f (y, z) + h(x, z) + u{0,3}(z)]

12.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1110

0000

0001

0001

, f :=
1000

1101

1101

0101

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1000

0001

1001

0001

=: g (h, g) is Pair 9

g(x, y) + 1 = f (y, x) + u{2}(x) + u{0,3}(y)

13.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1000

1001

0001

0001

, f :=
1000

1001

1000

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1000

1101

0101

0101

=: g g|{0,1,2} is bad

g(x, y) + 3 = maxz[f (z, y) + f (y, z) + h(x, z) + u{3}(z) + u{0,1,2}(y)]

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:34 V. DEINEKO ET AL.

14.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1000

1001

0001

0001

, f :=
1010

1011

1010

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1000

1001

1000

0001

=: g (h, g) is Pair 13

g(x, y) + 2 = maxz[f (z, y) + f (x, z) + h(y, z)]

15.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1000

1001

0001

0001

, f :=
1010

1011

1011

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1000

1001

1000

0001

=: g (h, g) is Pair 13

g(x, y) + 1 = f (y, x) + u{1}(x) + u{0,3}(y)

16.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1101

0001

0001

, f :=
1010

1101

1010

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1100

0101

1011

0101

=: g g|{0,1,2} is bad

g(x, y) + 2 = maxz[f (y, x) + h(z, y) + h(x, z) + u{3}(z)]

17.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1101

0001

0001

, f :=
1100

1100

1011

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1100

0100

0011

0111

=: g g|{0,1,2} is bad

g(x, y) + 3 = maxz[f (x, y) + h(x, z) + h(y, z) + u{3}(z) + u{0,3}(x)]

18.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1101

0001

0001

, f :=
0000

1101

1011

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

0000

1011

1011

1011

=: g g|{0,1} is bad

g(x, y) + 3 = maxw,z[f (w, y) + h(w, z) + h(x, z) + u{2}(w)]

19.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1101

0001

0001

, f :=
1010

0001

1011

0001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1010

1111

0111

0111

=: g g|{0,1,2} is bad

g(x, y) + 1 = maxz[f (y, z) + h(x, z)]

20.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1101

0001

0001

, f :=
1110

0101

0000

0101

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1010

0001

1011

0001

=: g (h, g) is Pair 19

g(x, y) + 1 = f (x, y) + u{2}(x) + u{0,2,3}(y)

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:35

21.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1101

0001

0001

, f :=
1010

0101

1010

0101

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1100

0111

0000

0111

=: g g|{0,1,2} is bad

g(x, y) + 3 = maxz[f (z, x) + h(x, z) + h(y, z) + u{0,3}(z)]

22.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1101

0001

0001

, f :=
0000

0101

1011

0101

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1010

1101

1010

0000

=: g (h, g) is Pair 16

g(x, y) + 1 = f (y, x) + u{0,1,2}(x) + u{0}(y)

23.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1101

0001

0001

, f :=
0000

1101

0011

0011

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒2

1100

1100

1011

0000

=: g (h, g) is Pair 17

g(x, y) + 1 = f (y, x) + u{0,1,2}(x) + u{0}(y)

24.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1000

1001

1001

0001

, f :=
0000

1101

1011

0000

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

0000

1011

1011

1011

=: g g|{0,1} is bad

g(x, y) + 3 = maxw,z[f (z, w) + f (w, y) + h(x, z) + u{1,3}(z) + u{2}(w)]

25.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1100

1101

0001

, f :=
1001

0100

1101

1001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1101

1001

1101

1101

=: g g|{0,1} is bad

g(x, y) + 3 = maxw,z[f (z, y) + f (x, w) + h(z, w) + u{0}(z) + u{3}(w)]

26.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1100

1101

0001

, f :=
1101

0100

1101

1001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒3

1001

0100

1101

1001

=: g (h, g) is Pair 25

g(x, y) + 2 = maxz[f (z, x) + f (z, y) + u{1,3}(z) + u{2}(x)]

27.

⎧⎪⎪⎨
⎪⎪⎩

h :=
1100

1100

0011

0011

, f :=
1001

0110

0110

1001

⎫⎪⎪⎬
⎪⎪⎭

∪ U s=⇒4

1111

1001

1001

1111

=: g g|{0,1} is bad

g(x, y) + 3 = maxw,z[f (z, y) + f (w, x) + h(z, w) + u{3}(z) + u{0}(w)]

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

16:36 V. DEINEKO ET AL.

ACKNOWLEDGMENTS. The authors are thankful to Gerhard Woeginger for encour-
aging this collaboration and to Johan Håstad for suggesting to use the bounded
occurrence property in our proofs. The authors would also like to thank the anony-
mous referees for providing useful comments on the article.

REFERENCES

ALIMONTI, P., AND KANN, V. 2000. Some APX-completeness results for cubic graphs. Theoret. Comput.
Sci. 237, 1-2, 123–134.

AUSIELLO, G., CRESZENZI, P., GAMBOSI, G., KANN, V., MARCHETTI-SPACCAMELA, A., AND PROTASI, M.
1999. Complexity and Approximation. Springer-Verlag, New York.

BAZGAN, C., AND KARPINSKI, M. 2005. On the complexity of global constraint satisfaction. In Proceed-
ings of the International Symposium on Algorithms and Computation (ISAAC’05). 624–633.

BERMAN, P., AND KARPINSKI, M. 2003. Improved approximation lower bounds on small occurrence
optimization. Tech. Rep. TR03-008, Electronic Colloquium on Computational Complexity (ECCC).

BÖRNER, F., BULATOV, A., JEAVONS, P., AND KROKHIN, A. 2003. Quantified constraints: Algorithms and
complexity. In Proceedings of the Workshop on Computer Science Logic (CSL’03). Lecture Notes in
Computer Science, vol. 2803. Springer-Verlag, New York, 58–70.

BULATOV, A. 2003. Tractable conservative constraint satisfaction problems. In Proceedings of the Annual
IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 321–
330.

BULATOV, A. 2006. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J.
ACM 53, 1, 66–120.

BULATOV, A., AND DALMAU, V. 2007. Towards a dichotomy theorem for the counting constraint satis-
faction problem. Inf. Computat. 205, 5, 651–678.

BULATOV, A., JEAVONS, P., AND KROKHIN, A. 2005. Classifying complexity of constraints using finite
algebras. SIAM J. Comput. 34, 3, 720–742.

BURKARD, R., KLINZ, B., AND RUDOLF, R. 1996. Perspectives of Monge properties in optimization.
Disc. Appl. Math. 70, 95–161.

COHEN, D., COOPER, M., JEAVONS, P., AND KROKHIN, A. 2005. Supermodular functions and the com-
plexity of Max CSP. Disc. Appl. Math. 149, 1-3, 53–72.

CREIGNOU, N. 1995. A dichotomy theorem for maximum generalized satisfiability problems. J. Comput.
Syst. Sci. 51, 511–522.

CREIGNOU, N., KHANNA, S., AND SUDAN, M. 2001. Complexity classifications of Boolean constraint
satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7.

DATAR, M., FEDER, T., GIONIS, A., MOTWANI, R., AND PANIGRAHY, R. 2003. A combinatorial algorithm
for MAX CSP. Inf. Proc. Lett. 85, 6, 307–315.

DEINEKO, V., RUDOLF, R., AND WOEGINGER, G. 1994. A general approach to avoiding 2×2 submatrices.
Computing 52, 371–388.

ENGEBRETSEN, L. 2004. The non-approximability of non-Boolean predicates. SIAM J. Disc. Math. 18, 1,
114–129.

FEDER, T., AND VARDI, M. 1998. The computational structure of monotone monadic SNP and constraint
satisfaction: A study through Datalog and group theory. SIAM J. Comput. 28, 57–104.

FUJISHIGE, S. 2005. Submodular Functions and Optimization, 2nd ed. Annals of Discrete Mathematics,
vol. 58. Elsevier.

GUTIN, G., RAfiEY, A., YEO, A., AND TSO, M. 2006. Level of repair analysis and minimum cost homo-
morphisms of graphs. Disc. Appl. Math. 154, 6, 881–889.

HAST, G. 2005. Beating a random assignment: Approximating constraint satisfaction problems. Ph.D.
dissertation Royal Institute of Technology, Stockholm, Sweden.

HÅSTAD, J. 2000. On bounded occurrence constraint satisfaction. Inf. Proc. Lett. 74, 1-2, 1–6.
HÅSTAD, J. 2001. Some optimal inapproximability results. J. ACM 48, 798–859.
HÅSTAD, J. 2005. Every 2-CSP allows nontrivial approximation. In Proceedings of the Annual ACM

Symposium on Theory of Computing (STOC’05). ACM, New York, 740–746.
HELL, P. 2003. Algorithmic aspects of graph homomorphisms. In Surveys in Combinatorics 2003,

C. Wensley, Ed. LMS Lecture Note Series, vol. 307. Cambridge University Press, Cambridge, MA,
239–276.

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

The Approximability of MAX CSP with Fixed-Value Constraints 16:37

HELL, P., AND NEŠETŘIL, J. 2004. Graphs and Homomorphisms. Oxford University Press.
IWATA, S., FLEISCHER, L., AND FUJISHIGE, S. 2001. A combinatorial strongly polynomial algorithm for

minimizing submodular functions. J. ACM 48, 4, 761–777.
JONSSON, P. 2000. Boolean constraint satisfaction: Complexity results for optimization problems with

arbitrary weights. Theoret. Comput. Sci. 244, 1-2, 189–203.
JONSSON, P., KLASSON, M., AND KROKHIN, A. 2006. The approximability of three-valued Max CSP.

SIAM J. Comput. 35, 6, 1329–1349.
JONSSON, P., AND KROKHIN, A. 2007. Maximum H -colourable subdigraphs and constraint optimization

with arbitrary weights. J. Comput. Syst. Sci. 73, 5, 691–702.
KARPINSKI, M. 2001. Approximating bounded degree instances of NP-hard problems. In Proceedings

13th Conference on Fundamentals of Computation Theory, FCT’01. Lecture Notes in Computer Science,
vol. 2138. Springer-Verlag, New York, 24–34.

KHANNA, S., SUDAN, M., TREVISAN, L., AND WILLIAMSON, D. 2001. The approximability of constraint
satisfaction problems. SIAM J. Comput. 30, 6, 1863–1920.

KHOT, S., KINDLER, G., MOSSEL, E., AND O’DONNELL, R. 2007. Optimal inapproximability results for
Max-Cut and other 2-variable CSPs? SIAM J. Comput. 37, 1, 319–357.

KLINZ, B., RUDOLF, R., AND WOEGINGER, G. 1995. Permuting matrices to avoid forbidden submatrices.
Disc. Appl. Math. 60, 223–248.

KROKHIN, A., BULATOV, A., AND JEAVONS, P. 2005. The complexity of constraint satisfaction: an alge-
braic approach. In Structural Theory of Automata, Semigroups, and Universal Algebra. NATO Science
Series II: Math., Phys., Chem., vol. 207. Springer Verlag, New York, 181–213.

KROKHIN, A., AND LAROSE, B. 2008. Maximizing supermodular functions on product lattices, with
application to maximum constraint satisfaction. SIAM J. Disc. Math. 22, 1, 312–328.

PE’ER, I., PUPKO, T., SHAMIR, R., AND SHARAN, R. 2004. Incomplete directed perfect phylogeny. SIAM
J. Comput. 33, 3, 590–607.

RUDOLF, R. 1994. Recognition of d-dimensional Monge arrays. Disc. Appl. Math. 52, 1, 71–82.
SCHAEFER, T. 1978. The complexity of satisfiability problems. In Proceedings of the Annual ACM

Symposium on Theory of Computing (STOC’78). ACM, New York, 216–226.
SCHRIJVER, A. 2000. A combinatorial algorithm minimizing submodular functions in polynomial time.

J. Combinat. Theory, Ser. B 80, 346–355.
TOPKIS, D. 1998. Supermodularity and Complementarity. Princeton University Press, Princeton, NJ.
WILLIAMS, R. 2005. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoret.

Comput. Sci. 348, 2-3, 357–365.

RECEIVED NOVEMBER 2005; REVISED JUNE 2008; ACCEPTED JUNE 2008

Journal of the ACM, Vol. 55, No. 4, Article 16, Publication date: September 2008.

