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Abstract

Over the past few years there has been considerable progress in meth-
ods to systematically analyse the complexity of constraint satisfaction
problems with specified constraint types. One very powerful theoretical
development in this area links the complexity of a set of constraints to a
corresponding set of algebraic operations, known as polymorphisms.

In this paper we extend the analysis of complexity to the more general
framework of combinatorial optimisation problems expressed using various
forms of soft constraints. We launch a systematic investigation of the
complexity of these problems by extending the notion of a polymorphism
to a more general algebraic operation, which we call a multimorphism. We
show that many tractable sets of soft constraints, both established and
novel, can be characterised by the presence of particular multimorphisms.
We also show that a simple set of NP-hard constraints has very restricted
multimorphisms. Finally, we use the notion of multimorphism to give a
complete classification of complexity for the Boolean case which extends
several earlier classification results for particular special cases.

Keywords: soft constraints, valued constraint satisfaction, combinatorial op-
timisation, submodular functions, tractability, multimorphism.
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1 Introduction

In the standard constraint satisfaction framework [14, 38] a constraint is un-
derstood to be a predicate, or relation, specifying the allowed combinations of
values for some fixed subset of variables: we will refer to such constraints here
as crisp constraints. Problems with crisp constraints deal only with feasibility :
no satisfying solution is considered better than any other.

A number of authors have suggested that the usefulness of the constraint
satisfaction framework could be greatly enhanced by extending the definition of
a constraint to include also soft constraints, which allow different measures of
desirability to be associated with different combinations of values [1, 2, 43]. In
this extended framework a constraint can be seen as a cost function defined on
a fixed subset of the variables which maps each possible combination of values
for those variables to a measure of desirability or undesirability.

Problems with soft constraints deal with optimisation as well as feasibility:
the aim is to find an assignment of values to all of the variables having the best
possible overall combined measure of desirability. In this paper we examine how
limiting the choice of cost functions affects the complexity of this optimisation
problem.

Example 1.1 Consider an optimisation problem where we have to choose sites
for n service stations along a motorway of length L, subject to the following
requirements:

• There are r > n possible sites at distances d1, . . . , dr along the motorway.
• Each pair of consecutive service stations must be separated by a distance

which is no less than A and no more than B.
• The service stations should be as equally spaced as possible.

One possible way to model this situation is as follows:

• Introduce variables v1, v2, . . . , vn to represent the position of each ser-
vice station, where each variable must be assigned a value from the set
{d1, . . . , dr}.

• Impose a binary constraint on each pair vi, vi+1, i = 1, . . . , n − 1, with
cost function δ, where δ(x, y) = 0 if A ≤ y − x ≤ B and ∞ otherwise.

• Impose a binary constraint on each pair vi, vi+1, i = 0, . . . , n, with cost
function ζ, where ζ(x, y) = |x − y|2. Add a unary constraint on v1 with
cost function ζ(0, x), and a unary constraint on vn, with cost function
ζ(x, L). (Note that the sum of these functions in minimal when the values
of these variables are equally spaced between 0 and L).

We would then seek an assignment of values from the set D = {d1, . . . , dr}, to
all of the variables, which minimises the sum of all these cost functions:

n−1∑

i=1

δ(vi, vi+1) + ζ(0, v1) +
n−1∑

i=1

ζ(vi, vi+1) + ζ(vn, L).
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The cost of allowing additional flexibility in the specification of constraints,
in order to model optimisation criteria as well as feasibility, is generally an
increase in computational difficulty. For example, we establish below that the
class of problems containing only unary constraints and a soft version of the
binary equality constraint is NP-hard (see Example 2.11).

On the other hand, for certain types of soft constraint it is possible to solve
the associated optimisation problems efficiently. For example, we establish be-
low that optimisation problems of the form described in Example 1.1 can be
solved in polynomial time (see Example 6.13).

In the case of crisp constraints there has been considerable progress in
analysing the complexity of problems involving different types of constraints.
This work has led to the identification of a number of classes of constraints
which are tractable, in the sense that there exists a polynomial time algorithm
to determine whether or not any collection of constraints from such a class can
be simultaneously satisfied [15, 26, 33, 40, 42]. One powerful result in this area
establishes that any tractable class of constraints over a finite domain must have
relations which are all preserved by a non-trivial algebraic operation, known as
a polymorphism [6, 26].

In the case of soft constraints there has been little detailed investigation of
the tractable cases, except for certain special cases on a two-valued domain [10,
30], and a special case involving simple temporal constraints [31]. In an earlier
paper [7] we identified a particular tractable class of binary soft constraints,
and showed that this class was maximal, in the sense that adding any other
soft binary constraint which is not in the class gives rise to a class of problems
which is NP-hard. This class has recently been used to study the complexity
of the minimum cost homomorphism problem [21], which has been used to
model the “Level of Repair Analysis” problem from operations research [22] (see
Example 2.7).

In this paper we take the first step towards a systematic analysis of the
complexity of soft constraints of arbitrary arity over arbitrary finite domains.
To do this we generalise the algebraic ideas used to study crisp constraints, and
introduce a new algebraic operation which we call a multimorphism. Every cost
function has an associated set of multimorphisms, and every multimorphism has
an associated set of cost functions. We show that, for several different types
of multimorphism, the associated collection of soft constraints is a maximal
tractable class. In other words, we show that several maximal tractable classes
of soft constraints can be precisely characterised as the collection of all soft con-
straints associated with a particular multimorphism. Furthermore, we show that
a simple NP-hard class of soft constraints has very restricted multimorphisms.

Finally, we apply the techniques developed in the paper to the two-valued
domain, where we obtain a new dichotomy theorem which classifies the com-
plexity of any set of soft constraints over this domain (Theorem 7.1). This
dichotomy theorem generalises several earlier results concerning the complexity
of particular Boolean constraint problems, including the Satisfiability prob-
lem [42], the Max-Sat problem [9], the weighted Min-Ones problem [10, 30],
and the weighted Max-Ones problem [10, 30] (see Corollary 7.12).
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The examples given throughout the paper demonstrate that the framework
we introduce here can be used to unify isolated results about tractable problem
classes from many different application areas, as well as prompting the discovery
of new tractable classes. For example, the notion of a multimorphism gener-
alises the notion of a polymorphism (see Proposition 4.10), and so can be used
to express earlier results concerning the characterisation of tractable subprob-
lems of many different decision problems: in the case of the Satisfiability
problem these include the Horn-Sat and 2-Sat subproblems [19]; in the case
of the standard crisp constraint satisfaction problem these include generalisa-
tions of Horn-Sat (such as the so-called ‘max-closed’ constraints [29, 26]),
generalisations of 2-Sat (such as the so-called ‘0/1/all’ or ‘implicative’ con-
straints [8, 25, 32]) and systems of linear equations [26]. The notion of a mul-
timorphism can also be used to characterise tractable subproblems of optimisa-
tion problems: in the case of the optimisation problem Max-Sat these include
the ‘0-valid’, ‘1-valid’ and ‘2-monotone’ constraints [10]; in the case of opti-
misation problems over sets these include the minimisation of submodular set
functions [23, 39] and bisubmodular set functions [18].

2 Definitions

Several alternative mathematical frameworks for soft constraints have been pro-
posed in the literature, including the very general frameworks of ‘semi-ring based
constraints’ and ‘valued constraints’ [1, 2, 43]. For simplicity, we shall adopt the
valued constraint framework here (the relationship with the semi-ring framework
is discussed briefly in Section 8).

In the valued constraint framework each constraint has an associated func-
tion which assigns a cost to each possible assignment of values. These costs are
chosen from some valuation structure, satisfying the following definition.

Definition 2.1 A valuation structure, Ω, is a totally ordered set, with a
minimum and a maximum element (denoted 0 and ∞), together with a com-
mutative, associative binary aggregation operator (denoted ⊕), such that for
all α, β, γ ∈ Ω, α⊕ 0 = α and α⊕ γ ≥ β ⊕ γ whenever α ≥ β.

Definition 2.2 An instance of the valued constraint satisfaction problem,
VCSP, is a tuple P = 〈V, D, C, Ω〉 where:

• V is a finite set of variables;

• D is a finite set of possible values;

• Ω is a valuation structure representing possible costs;

• C is a set of constraints.

Each element of C is a pair c = 〈σ, φ〉 where σ is a tuple of variables
called the scope of c, and φ is a mapping from D|σ| to Ω, called the cost
function of c.
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Definition 2.3 For any VCSP instance P = 〈V,D, C, Ω〉, an assignment for
P is a mapping s : V → D. The cost of an assignment s, denoted CostP (s), is
given by the aggregation of the costs for the restrictions of s onto each constraint
scope, that is,

CostP (s) def=
⊕

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.

Our results in Sections 3 and 4 (except for Proposition 4.10) will apply to any
valuation structure satisfying Definition 2.1. In Sections 5, 6 and 7, and in the
examples of particular soft constraint problems given throughout the paper, we
will focus on the valuation structure R+, consisting of the non-negative real
numbers together with infinity, with the usual ordering and the usual addition
operation. (Possible extensions of our results to other valuation structures are
discussed briefly in Section 8.)

The valuation structure R+ is sufficiently flexible to allow us to express a
wide range of problems as valued constraint satisfaction problems with costs in
R+, as the following examples indicate.

Example 2.4 [Standard CSP] In the standard constraint satisfaction prob-
lem with crisp constraints [14, 36] each constraint c is specified by a pair, 〈σ,R〉,
where σ is the scope of c and R is a relation specifying the allowed combinations
of values for the variables in σ.

For any standard constraint satisfaction problem instance P, we can define
a corresponding valued constraint satisfaction problem instance P̂ in which the
range of the cost functions of all the constraints is the set {0,∞} ⊆ R+. For
each crisp constraint 〈σ,R〉 of P, we define a corresponding valued constraint
〈σ, φR〉 of P̂; the cost function φR maps each tuple allowed by R to 0, and each
tuple disallowed by R to ∞. The cost of an assignment s for P̂ is computed
as in Definition 2.3, so it equals the minimal possible cost, 0, if and only if s
satisfies all of the crisp constraints in P.

Example 2.5 [Max-CSP] For any standard constraint satisfaction problem
instance P with crisp constraints, we can define a corresponding valued con-
straint satisfaction problem instance P# in which the range of the cost functions
of all the constraints is the set {0, 1} ⊆ R+. For each crisp constraint 〈σ,R〉 of
P, we define a corresponding valued constraint 〈σ, χR〉 of P#; the cost function
χR maps each tuple allowed by R to 0, and each tuple disallowed by R to 1.

The cost of an assignment s for P# is again computed as in Definition 2.3, so
in this case it equals the total number of crisp constraints in P which are violated
by s. Hence a solution to P# corresponds to an assignment which violates the
minimal number of constraints of P, and hence satisfies the maximal number
of constraints of P. Finding assignments of this kind is generally referred to as
solving the Max-CSP problem [17, 34].
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Example 2.6 [Minimum k-Terminal Cut and Min-Cut] Let G be an undi-
rected graph with vertices V and edges E, and let {v1, v2, . . . , vk} ⊆ V be a set
of k distinguished vertices. The problem of finding a smallest set of edges whose
removal disconnects the distinguished vertices from each other is known as the
Minimum k-Terminal Cut problem [12]; such a set of edges is called a mini-
mum k-terminal cut. (In the special case when k = 2 this problem is known as
the Min-Cut problem [39].)

Each instance of the Minimum k-Terminal Cut problem can be formulated
as a VCSP instance PG with costs in R+. The instance PG is constructed as
follows: the variables of PG are the vertices V of G, and they take values in
the set D = {1, 2, . . . , k}. For each distinguished vertex vi ∈ {v1, v2, . . . , vk},
impose a unary constraint on the variable vi with cost function ψi : {0, 1} → R+,
defined as follows:

ψi(x) =
{

0 if x = i
∞ otherwise

For each edge e ∈ E, impose a binary constraint with scope e and cost function
φEQ : D2 → R+, defined as follows

φEQ(x, y) =
{

0 if x = y
1 otherwise.

It is straightforward to check that the number of edges in a minimum k-terminal
cut of G is equal to the cost of a solution to PG.

Example 2.7 [Level of Repair Analysis] Level of Repair Analysis (LORA)
is a prescribed procedure for defence logistics support planning [22]. For a
complex engineering system containing perhaps thousands of assemblies, sub-
assemblies, modules and components, LORA seeks to determine an optimal
provision of repair and maintenance facilities to minimize overall life-cycle costs.

In the simple model of this problem presented in [22] the engineering system
is modelled as a set of items V , together with a binary relation E on V such
that E(v, v′) holds when item v is contained in item v′. Each item in V must
be assigned a repair level (such as “central repair”, “local repair”, “discard”)
chosen from some fixed set of possible repair levels, D. There is a fixed cost
cdv associated with the assignment of repair level d ∈ D to item v ∈ V (which
may be infinite if that repair level is not available for that item). There are also
some restrictions on the allowed assignments for pairs of items related by E: for
example, if an item is assigned “discard”, then all items contained in that item
must also be assigned this repair level. The question is to find an assignment of
repair levels to items which minimises the total cost.

For any LORA instance of this kind, we can define a corresponding valued
constraint satisfaction problem instance P with costs in R+. For each item
v ∈ V we define a unary constraint 〈〈v〉, κv〉 of P, where the cost function κv

maps each element d ∈ D to cdv. For each pair 〈v, v′〉 of items related by E, we
define a valued constraint 〈〈v, v′〉, φ〉 of P , where the cost function φ maps each
pair of allowed repair levels to 0, and each pair of disallowed repair levels to ∞.
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A solution to P corresponds to an assignment of repair levels which minimises
the total cost.

The problem of finding a solution to a valued constraint satisfaction problem
is an NP-optimisation problem, that is, it lies in the complexity class NPO
(see [10] for a formal definition of this class).

For each valued constraint satisfaction problem there is a corresponding de-
cision problem in which the question is to decide whether there is a solution with
cost lower than some given threshold value. It is clear from Example 2.4 that
there is a polynomial-time reduction to this decision problem from the standard
constraint satisfaction problem, which is known to be NP-complete [36], so the
general VCSP is NP-hard. In this paper we will consider the effect of restricting
the forms of cost function allowed in the constraints; we will show that in some
cases this results in more tractable versions of the VCSP.

Definition 2.8 Let D be a set and Ω a valuation structure. A valued con-
straint language over D with costs in Ω is defined to be a set, Γ, such that
each φ ∈ Γ is a function from Dm to Ω, for some m ∈ N, where m is called the
arity of φ. The class VCSP(Γ) is defined to be the class of all VCSP instances
where the cost functions of all constraints lie in Γ.

We will say that a finite valued constraint language Γ is tractable if every
instance in VCSP(Γ) can be solved in polynomial time. We will say that an
infinite valued constraint language is tractable if every finite subset1 of it is
tractable. Finally, we will say that a valued constraint language Γ is NP-hard
if the decision problem corresponding to VCSP(Γ′) is NP-complete, for some
finite Γ′ ⊆ Γ.

Example 2.9 [SAT and Max-SAT] Let Γ be any valued constraint language
over a set D, where |D| = 2. In this case VCSP(Γ) is called a Boolean valued
constraint satisfaction problem.

If we restrict Γ even further, by only allowing cost functions with range
{0,∞} ⊆ R+, as in Example 2.4, then each VCSP(Γ) corresponds precisely to a
standard Boolean constraint satisfaction problem with crisp constraints. Such
problems are sometimes known as Generalised Satisfiability problems [19,
42]. The complexity of VCSP(Γ) for such restricted sets Γ has been completely
characterised, and the six tractable cases have been identified [10, 19, 42].

Alternatively, if we restrict Γ by only allowing functions with range {0, 1} ⊆
R+, as in Example 2.5, then each VCSP(Γ) corresponds precisely to a standard
Boolean maximum satisfiability problem, in which the aim is to satisfy the
maximum number of crisp constraints. Such problems are sometimes known as
Max-Sat problems [10]. The complexity of VCSP(Γ) for such restricted sets
Γ has been completely characterised, and the three tractable cases have been
identified (see Theorem 7.6 of [10]).

1Defining tractability in terms of finite subsets ensures that the tractability of a valued
constraint language is independent of whether the cost functions are represented explicitly
(via tables of values) or implicitly (via oracles).
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The next two examples indicate that generalising the constraint satisfaction
framework to include valued constraints can indeed increase the computational
complexity. For example, the standard 2-Satisfiability problem is well-known
to be tractable [19], but the valued constraint satisfaction problem involving only
the single binary Boolean function, φXOR, defined in Example 2.10, is NP-hard.

Example 2.10 Let ΓXOR be the Boolean valued constraint language over D =
{0, 1} which contains just the single binary function φXOR : D2 → R+ defined
by

φXOR(x, y) =
{

0 if x 6= y
1 otherwise

The problem VCSP(ΓXOR) corresponds to the Max-Sat problem for the exclusive-
or predicate, which is known to be NP-hard (see Lemma 7.4 of [10]), so ΓXOR

is NP-hard.

Similarly, the standard constraint satisfaction problem involving only crisp unary
constraints and equality constraints is clearly trivial, but the valued constraint
satisfaction problem involving only unary valued constraints and a soft version
of the equality constraint, specified by the function φEQ defined in Example 2.6,
is NP-hard.

Example 2.11 Let Γ3 be the valued constraint language over D = {0, 1, 2}
consisting of the set of all unary functions with costs in R+ together with the
single binary function φEQ : D2 → R+, defined in Example 2.6.

Even though Γ3 is apparently simple, it can be shown that VCSP(Γ3) is
NP-hard, by reduction from the Minimum 3-Terminal Cut problem defined
in Example 2.6, which is known to be NP-hard [12]. To obtain the reduction,
we use the construction described in Example 2.6 to transform each instance of
Minimum 3-Terminal Cut to an instance of VCSP(Γ3) in polynomial time.

In order to allow us to translate easily between relations and functions, as
described in Example 2.4, we make the following definitions.

Definition 2.12 Any function φ which only takes values in the set {0,∞} ⊆ Ω
will be called a crisp function.

For any relation R, with arity m, we define an associated crisp function
known as the feasibility function of R, and denoted φR, as follows:

φR(x1, x2, . . . , xm) =
{

0 if 〈x1, x2, . . . , xm〉 ∈ R
∞ otherwise

For any m-ary function φ into any valuation structure Ω, we define a relation
known as the feasibility relation of φ, and denoted Feas(φ), as follows:

〈x1, x2, . . . , xm〉 ∈ Feas(φ) ⇔ φ(x1, x2, . . . , xm) < ∞.

8



A function φ will be called essentially crisp if φ takes at most one finite value,
that is, there is some value α such that φ(x) = β < ∞ ⇒ β = α. Any valued
constraint language Γ containing essentially crisp functions only will be called
an essentially crisp language.

Note that when Γ is an essentially crisp language any assignment with finite
cost has the same cost as any other assignment with finite cost. Hence we can
solve any instance of VCSP(Γ) for such languages by solving the corresponding
standard constraint satisfaction problem in which each valued constraint 〈σ, φ〉
is replaced by the crisp constraint 〈σ,Feas(φ)〉 (see Definition 2.12). We will use
this observation a number of times in establishing the results below.

3 Expressibility

Let Γ be a valued constraint language, and consider an arbitrary instance P
in VCSP(Γ). The variables in the scope of any constraint of P are explicitly
constrained. What is more, any subset of the variables of P may be constrained
implicitly, due to the combined effect of the constraints of P. The cost function
which describes this implicit constraint may or may not be an element of Γ, but
can, in a sense, be expressed using elements of Γ.

The next two definitions formalise this idea of a function being expressible
over a valued constraint language.

Definition 3.1 For any VCSP instance P = 〈V, D,C, Ω〉, and any tuple of
distinct variables W = 〈v1, . . . , vk〉, the cost function of P on W , denoted
ΦWP , is defined as follows:

ΦWP (d1, . . . , dk) def= min
{s:V→D | 〈s(v1),...,s(vk)〉=〈d1,...,dk〉}

CostP (s)

Note that the cost function of P on W is a kind of projection of the overall cost
function onto a specified subset of the variables.

Definition 3.2 A function φ is expressible over a valued constraint language
Γ if there exists an instance P = 〈V, D,C, Ω〉 in VCSP(Γ) and a list W of
variables from V such that φ = ΦWP .

The set of all functions expressible over Γ will be denoted Γ∗.

In all cases Γ∗ ⊇ Γ, but it is often the case that Γ∗ contains many more functions
than Γ, as the next example illustrates.

Example 3.3 Let D = {0, 1, 2, . . . , |D| − 1} be a subset of the integers, and
let Γ1 = {φ0, φ1} be the valued constraint language over D consisting of the
constant unary cost function φ0 : D → R+ defined by φ0(x) = 1 and the unary
cost function φ1 : D → R+ defined by φ1(x) = x.
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In this case the language (Γ1)∗ also contains all cost functions defined by
linear expressions with non-negative integer coefficients, since for any such
cost function φ we have

φ(x1, x2, . . . , xm) = a0φ0(x1) +
m∑

i=1

aiφ1(xi)

for some set of non-negative integers a0, a1, . . . , am, and hence φ = Φ〈x1,...,xm〉
P

for some instance P of VCSP(Γ1).
This much larger valued constraint language will be denoted Γlin.

The notion of expressibility is a key tool in analysing the complexity of valued
constraint languages, as the next result shows.

Theorem 3.4 Let Γ and Γ′ be valued constraint languages with Γ′ ⊆ Γ∗.

• If Γ is tractable, then Γ′ is also tractable.

• If Γ′ is NP-hard, then Γ is also NP-hard.

Proof: Let Γ0 be a finite subset of Γ′, let P = 〈V, D, C, Ω〉 be any instance in
VCSP(Γ0), and let c = 〈σ, φ〉 be a constraint in C.

Since Γ′ ⊆ Γ∗ we know that φ is expressible over Γ, so there exists an instance
Pφ in VCSP(Γ), and a list of variables W of Pφ, such that ΦWPφ

= φ. Hence we

can replace the constraint c in P with a copy of Pφ (where the variables in the
scope σ are identified with the list of variables W , and the remaining variables
of Pφ are disjoint from V ) to obtain a new problem instance P ′. Note that
the solutions to P ′, when restricted to V , correspond precisely to the original
solutions to P and have the same costs.

By repeating this construction for each constraint c of P, we can obtain
an instance P ′′ of VCSP(Γ) whose solutions, when restricted to V , correspond
precisely to the original solutions to P and have the same costs. Since Γ0 is
finite, there is a bound on the size of the instances Pφ used in the construction,
and so the size of P ′′ is bounded by a constant multiple of the size of P.

If Γ is tractable, then we can solve P in polynomial time by carrying out
this construction, using a polynomial time algorithm for VCSP(Γ), and then
restricting the solutions obtained to the original variables V . This is sufficient
to establish that Γ′ is tractable.

If Γ′ is NP-hard, then this construction establishes that Γ is also NP-hard.

Example 3.5 Consider the languages Γ1 and Γlin defined in Example 3.3.
Since Γ1 contains only unary cost functions it is clearly tractable. Since Γlin ⊆
(Γ1)∗, it follows from Theorem 3.4 that Γlin is tractable.
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4 Multimorphisms

For crisp constraints, it has been shown that the expressive power of a set
of relations is determined by certain algebraic invariance properties of those
relations, known as polymorphisms [6, 26, 27, 28, 41, 46].

Throughout the rest of this paper, the ith component of a tuple t will be
denoted t[i].

Definition 4.1 A polymorphism of a relation R ⊆ Dm is a function f :
Dk → D, for some k, such that whenever t1, . . . , tk are elements of R then so is
〈f(t1[1], . . . , tk[1]), . . . , f(t1[m], . . . , tk[m])〉.

Example 4.2 Let D = {0, 1, 2, . . . , |D| − 1} be a subset of the integers, and
let R be the ternary relation over D defined by R = {〈x, y, z〉 | ax + by ≤
cz}, where a, b, c are positive constants. Consider the function f : D2 → D
defined by f(x, y) = Min(x, y). For any elements, t1, t2, of R we have that
at1[1] + bt1[2] ≤ ct1[3] and at2[1] + bt2[2] ≤ ct2[3], which together imply that

a Min(t1[1], t2[1]) + b Min(t1[2], t2[2]) ≤ c Min(t1[3], t2[3]).

Hence f is a polymorphism of R, and we will say that R has the polymorphism
Min.

The concept of a polymorphism is specific to relations, and cannot be applied
directly to the functions of a valued constraint language. However, we now
introduce a more general notion, which we call a multimorphism, which does
apply directly to functions (see Figure 1 for a concrete example).

Definition 4.3 Let D be a set, Ω a valuation structure, and φ : Dm → Ω a
function.

We say that F : Dk → Dk is a multimorphism of φ if, for any list of
k-tuples t1, t2 . . . , tm over D we have

k⊕

i=1

φ(F (t1)[i], F (t2)[i], . . . , F (tm)[i]) ≤
k⊕

i=1

φ(t1[i], t2[i], . . . , tm[i]). (1)

If F is a multimorphism of every function in a language Γ, then we will say that
F is a multimorphism of Γ, and that Γ has the multimorphism F . The largest
such language, consisting of all functions φ with costs in Ω which have F as a
multimorphism, will be denoted ImpΩ(F ).

The notation ImpΩ(F ) is an abbreviation for “Improved by F”; this term was
chosen because the functions for which F is a multimorphism are precisely those
functions whose aggregated value is “improved” (i.e., lowered, or left unchanged)
by applying the function F (co-ordinatewise) to any suitable collection of argu-
ment vectors, to obtain a new collection of argument vectors (Equation 1).

It will often be convenient to describe a multimorphism F : Dk → Dk

by listing its k separate component functions, Fi : Dk → D, defined by
Fi(x1, . . . , xk) = F (x1, . . . , xk)[i].
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6111
5011
4101
3001
3110
2010
1100
0000
φzyx 1100

3001

4101Max

0000Min
+   = 4

+   = 4
t1 t2 t3

F(t1) F(t2) F(t3)

F

Figure 1: An example of the form of inequality that shows that the function
φ : {0, 1}3 → R+ defined by φ(x, y, z) = 3x + 2y + z has the multimorphism
F = 〈Min, Max〉. (See Example 4.4.)

Example 4.4 Let D = {0, 1, 2, . . . , |D|− 1} be a subset of the integers, and let
φ : D3 → R+ be the linear function defined by φ(x, y, z) = ax + by + cz, where
a, b, c are positive constants.

Consider the function F : D2 → D2 defined by F (x, y) = 〈Min(x, y), Max(x, y)〉.
For any list of pairs, t1, t2, t3, over D we have:

2⊕

i=1

φ(F (t1)[i], F (t2)[i], F (t3)[i])

=
2⊕

i=1

φ(〈Min(t1[1], t1[2]), Max(t1[1], t1[2])〉[i], . . . ,

〈Min(t3[1], t3[2]),Max(t3[1], t3[2])〉[i])
= φ(Min(t1[1], t1[2]), Min(t2[1], t2[2]), Min(t3[1], t3[2]))

⊕ φ(Max(t1[1], t1[2]),Max(t2[1], t2[2]), Max(t3[1], t3[2]))
= aMin(t1[1], t1[2]) + b Min(t2[1], t2[2]) + c Min(t3[1], t3[2])

+ a Max(t1[1], t1[2]) + bMax(t2[1], t2[2]) + c Max(t3[1], t3[2])
= a(t1[1] + t1[2]) + b(t2[1] + t2[2]) + c(t3[1] + t3[2])

=
2⊕

i=1

φ(t1[i], t2[i], t3[i]).

(A particular concrete example is illustrated in Figure 1.)
Hence F is a multimorphism of φ, and we will say that φ has the multimor-

phism 〈Min,Max〉.
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The next result establishes that multimorphisms have the key property that
they extend to all functions expressible over a given language.

Theorem 4.5 If F is a multimorphism of a valued constraint language Γ, then
F is also a multimorphism of Γ∗.

Proof: Let F be a multimorphism of Γ, and let φ1, φ2 be arbitrary elements of
Γ. By Definition 4.3, F is a multimorphism of φ1 ⊕ φ2. Similarly, since Equa-
tion 1 holds for all choices of tuples t, F is a multimorphism of the function
obtained by minimising φ1 over any subset of its arguments. Hence, by Defini-
tion 3.2, F is a multimorphism of any function in Γ∗.

We now show that some important classes of functions are characterised by
the property of having a particular form of multimorphism.

Example 4.6 For any finite set V , a real-valued function ψ defined on subsets
of V is called a submodular function [39] if, for all subsets S and T of V ,

ψ(S ∩ T ) + ψ(S ∪ T ) ≤ ψ(S) + ψ(T ). (2)

The problem of submodular function minimisation consists in finding a
subset S of V for which the value of ψ(S) is minimal. Such problems arise in a
number of different contexts [39]. For example, Cunningham [11] showed that
finding the maximum flow in a network can be viewed as a special case of the
general problem of submodular function minimisation.

It has been known for a long time that submodular functions can be min-
imised in polynomial time using the ellipsoid method [20]. Recently, several
different strongly polynomial, combinatorial algorithms have been proposed for
this problem [16, 23, 44].

Any function ψ defined on subsets of a set V = {v1, . . . , vn} can be associated
with a function φ : {0, 1}n → R+ defined as follows: for each tuple t ∈ D|V |, set
φ(t) = ψ(T ), where T = {vi | t[i] = 1}.

For any tuples s, t over {0, 1}, if we set S = {vi | s[i] = 1} and T =
{vi | t[i] = 1}, then S ∩ T = {vi | Min(s[i], t[i]) = 1}, where Min is the
function returning the minimum of its two arguments. Similarly, S ∪ T = {vi |
Max(s[i], t[i]) = 1}, where Max is the function returning the maximum of its
two arguments. Hence, comparing Equation 2 and Equation 1 (Definition 4.3),
it follows that ψ is submodular if and only if the corresponding cost function φ
has the multimorphism 〈Min,Max〉.

Example 4.7 For any finite set V , a real-valued function ψ defined on pairs
of disjoint subsets of V is called a bisubmodular function [18] if for all pairs
〈S1, S2〉 and 〈T1, T2〉 of disjoint subsets of V ,

ψ(〈S1, S2〉 u 〈T1, T2〉) + ψ(〈S1, S2〉 t 〈T1, T2〉) ≤ ψ(〈S1, S2〉) + ψ(〈T1, T2〉) (3)
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where

〈S1, S2〉 u 〈T1, T2〉 = 〈S1 ∩ T1, S2 ∩ T2〉
〈S1, S2〉 t 〈T1, T2〉 = 〈(S1 ∪ T1) \ (S2 ∪ T2), (S2 ∪ T2) \ (S1 ∪ T1)〉

It is known [18] that a bisubmodular function ψ which takes integer values only
can be minimised in O(|V |5 log M) time, where M designates the maximum
value of the function ψ.

Any function ψ defined on pairs of disjoint subsets of a set V = {v1, . . . , vn}
can be associated with a function φ : {0, 1, 2}n → R+ defined as follows: for
each tuple t ∈ D|V |, set φ(t) = ψ(〈T1, T2〉), where T1 = {vi | t[i] = 1} and
T2 = {vi | t[i] = 2}.

Arguing as in Example 4.6, if follows from Equation 3 that ψ is bisubmod-
ular if and only if the corresponding cost function φ has the multimorphism
〈min0(x, y),max0(x, y)〉, where

min0(x, y) =
{

Min(x, y) if {x, y} 6= {1, 2}
0 otherwise

max0(x, y) =
{

Max(x, y) if {x, y} 6= {1, 2}
0 otherwise

In Section 6 we will show that a wide range of tractable optimisation problems
with costs in R+ are characterised by the presence of certain forms of multimor-
phism. In Section 7 we will show that in the Boolean case every such tractable
optimisation problem of the form VCSP(Γ) is characterised by the presence of
a particular multimorphism.

A function F : Dk → Dk is called conservative if, for each possible choice of
x1, x2, . . . , xk, the tuple F (x1, x2, . . . , xk) contains the same multi-set of values
x1, x2, . . . , xk (in some order).

Example 4.8 For any totally ordered set D, the function F : Dk → Dk which
returns its arguments in sorted order is conservative. For example, the function
F : D2 → D2 defined by F (x, y) = 〈Min(x, y),Max(x, y)〉 is conservative.

On the other hand, the function F : D2 → D2 defined by F (x, y) =
〈Max(x, y),Max(x, y)〉 is not conservative.

Lemma 4.9 Any conservative function F : Dk → Dk is a multimorphism of
all unary cost functions.

Proof: If F is conservative, then Equation 1 of Definition 4.3 holds (with
equality) for any unary function φ, so F is a multimorphism of any unary
function.

There is a close relationship between the polymorphisms of a relation R and
the multimorphisms of the corresponding feasibility function φR, as the next
result makes clear.
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Proposition 4.10 Let R be a relation of arity m, and let φR be the correspond-
ing feasibility function with range {0,∞} defined in Definition 2.12.

For any collection of polymorphisms f1, f2, . . . , fk : Dk → D of R, the func-
tion F : Dk → Dk is a multimorphism of φR, where

F (x1, x2, . . . , xk) = 〈f1(x1, x2, . . . , xk), f2(x1, x2, . . . , xk), . . . , fk(x1, x2, . . . , xk)〉
Furthermore, if F : Dk → Dk is a multimorphism of a function φ : Dm →

R+, then each of the k component functions of F is a polymorphism of the
relation Feas(φ).

Proof: Follows immediately from Definition 4.1 and Definition 4.3 restricted
to the special case of crisp functions.

Proposition 4.10 shows that, in the special case of crisp cost functions, a
multimorphism can be seen as simply a collection of polymorphisms (which
need not be distinct), and a polymorphism can be seen as simply a component
function of a multimorphism. Hence the notion of a multimorphism can be
viewed as an extension and generalisation of the notion of a polymorphism.

5 A Family of NP-hard Languages

In the remainder of the paper we will use the results obtained above to classify
the complexity of a wide range of valued constraint languages with costs in
R+. We start by establishing a sufficient condition for such a language to be
NP-hard.

Proposition 5.1 Let Γ be a valued constraint language over a set D, with costs
in R+. If there exist d, d′ ∈ D, and α, β ∈ R+, with α < β < ∞, such that the
binary function φXORβ

α
given by

φXORβ
α
(x, y) =





α if x 6= y ∧ x, y ∈ {d, d′}
β if x = y ∧ x, y ∈ {d, d′}
∞ otherwise

is expressible over Γ, then VCSP(Γ) is NP-hard.

Proof: An assignment to an instance of VCSP({φXORβ
α
}) has finite cost if and

only if it assigns one of the two values d and d′ to all (constrained) variables.
Hence we may restrict all variables to these two values. Lemma 7.4 of [10]
states that the two-valued problem VCSP({φXOR}) is NP-hard, where φXOR is
the Boolean exclusive-or function, as defined in Example 2.10. Since adding a
constant to all cost functions, and scaling all costs by a constant factor, does not
affect the difficulty of solving a VCSP instance over the valuation structure R+,
we conclude that VCSP({φXORβ

α
}) is also NP-hard. Hence, by Theorem 3.4,

VCSP(Γ) is NP-hard.
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Next we show that the set of multimorphisms of any Boolean language which
is shown to be NP-hard using Proposition 5.1 must be very restricted.

Definition 5.2 A function f : Dk → D is called essentially unary if there
exists a non-constant unary function g : D → D and an index i ∈ {1, 2, . . . , k}
such that f(d1, d2, . . . , dk) = g(di) for all choices of d1, d2, . . . , dk.

Definition 5.3 An injective multimorphism in which every component func-
tion is essentially unary will be called trivial.

Theorem 5.4 A function F : {0, 1}k → {0, 1}k is a multimorphism of the
valued Boolean constraint language ΓXOR defined in Example 2.10 if and only
if F is trivial.

Proof: It is straightforward to check that any injective function F : {0, 1}2 →
{0, 1}2 where each component function is essentially unary is a multimorphism
of ΓXOR = {φXOR}.

To establish the converse, let D = {0, 1} and let F : Dk → Dk be any
multimorphism of φXOR. By Definition 4.3 we have

∀s, t ∈ Dk,

k∑

i=1

φXOR(F (s)[i], F (t)[i]) ≤
k∑

i=1

φXOR(s[i], t[i]).

For any pair of tuples s and t, we define the Hamming distance between s and t,
denoted H(s, t), to be the number of co-ordinate positions at which they differ.
We can rewrite the above inequality using Hamming distances to obtain

∀s, t ∈ Dk, k −H(F (s), F (t)) ≤ k −H(s, t),

and so
∀s, t ∈ Dk, H(F (s), F (t)) ≥ H(s, t). (4)

This implies that F is injective, and hence a bijection from Dk to Dk, so by
summing over all elements of Dk we obtain

∑

s,t∈Dk

H(F (s), F (t)) =
∑

s,t∈Dk

H(s, t). (5)

From Equation 4 and Equation 5 it follows that

∀s, t ∈ Dk, H(F (s), F (t)) = H(s, t) (6)

Now let 0 be the all zero k-tuple and define the function PF : Dk → Dk by
setting

PF (s)[i] =
{

1− s[i] if F (0)[i] = 1
s[i] otherwise
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Since φXOR(a, b) = φXOR(1− a, 1− b), we have that

k∑

i=1

φXOR(PF (F (s))[i], PF (F (t))[i]) =
k∑

i=1

φXOR(F (s)[i], F (t)[i]),

so F ◦ PF is a multimorphism of φXOR. By construction, PF (F (0)) = 0, and it
follows from Equation 6 (by setting t = 0) that F ◦ PF is conservative.

Let ti be the k-tuple which is zero except at position i. We can re-order the
components of the conservative function F ◦PF to obtain the function F ′ which
fixes each ti. Now consider a k-tuple s. The function F ′ is conservative, and
by Equation 6 we have that H(F ′(s), ti) = H(s, ti), for each ti. It follows that
F ′(s) has ones exactly where s does, and so F ′ is the identity function. Hence
F ◦ PF simply returns its list of arguments in some fixed order.

Finally, since F = (F ◦PF ) ◦PF , it follows that each component function of
F is essentially unary.

Corollary 5.5 Let Γ be a valued constraint language over {0, 1}, with costs in
R+.

If the cost function φXORβ
α

defined in Proposition 5.1 is expressible in Γ for
some α, β ∈ R+, with α < β < ∞, then every multimorphism of Γ is trivial.

Proof: Follows immediately from Theorem 5.4, Theorem 4.5, and the fact that
the set of multimorphisms of any cost function with costs in R+ is unchanged
by adding a constant and scaling all values by a constant factor.

6 Multimorphisms and Tractable Languages

In this section we will present several maximal tractable valued constraint lan-
guages with costs in R+. Some of these are translations of known tractable
optimisation problems into the VCSP framework, and others are novel tractable
classes. In all cases we are able to give a characterisation of the tractable lan-
guage in terms of a single multimorphism. Hence, in all cases we show that the
presence of a certain kind of multimorphism is sufficient to guarantee tractabil-
ity.

We first make the following observations:

• If Γ is a tractable valued constraint language with costs in R+, then the
set of relations {Feas(φ) | φ ∈ Γ} must be a tractable crisp constraint
language. By the results of [6, 26, 28], this implies that each relation
Feas(φ) must have some fixed set of polymorphisms which guarantees the
tractability of this set of relations.

• By Proposition 4.10, we know that if F : Dk → Dk is a multimorphism of a
function φ, then each of the k component functions of F is a polymorphism
of the relation Feas(φ).
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Hence, in our search for tractable valued constraint languages with costs in R+

a sensible place to start is by considering those multimorphisms whose com-
ponent functions are polymorphisms which guarantee tractability. The most
straightforward examples of such polymorphisms are constant functions, maxi-
mum and minimum functions on ordered sets, majority functions and minority
functions [26]; the examples we give in this section are all obtained by combining
these simple functions in various ways.

We will show in Section 7 that the examples considered in this section are
sufficient to obtain a complete characterisation of the complexity of all valued
Boolean constraint languages with costs in R+.

6.1 Constant multimorphisms

The first example we consider is a rather straightforward family of tractable
languages, characterised by the presence of a single unary multimorphism with
a constant value.

Lemma 6.1 A cost function φ has a unary multimorphism with constant value
d if and only if the value of φ(d, d, . . . , d) is the smallest value in the range of
φ.

Example 6.2 A constant cost function has all possible constant unary multi-
morphisms.

Example 6.3 The valued constraint language Γlin defined in Example 3.3 has
the constant unary multimorphism with value 0.

Although the proof of tractability for this case is trivial, the proof that every
language characterised by a constant multimorphism is a maximal tractable
language is more interesting, and provides a simple example of the techniques
we shall use for other cases.

Theorem 6.4 Let D be a set, and let F : D → D be a constant function.

1. The set of functions ImpR+
(F ) is a tractable valued constraint language.

2. Any valued constraint language Γ such that Γ ⊃ ImpR+
(F ) is NP-hard.

Proof: Let dF be the (constant) value of F .

1. Let φ be any function in ImpR+
(F ), and let m be the arity of φ. Since F

is a multimorphism of φ, we have that, for all d1, d2, . . . , dm ∈ D,

φ(dF , dF , . . . , dF ) ≤ φ(d1, d2, . . . , dm)

Hence any instance P in VCSP(ImpR+
(F )) has a solution which assigns

the value dF to every variable, so VCSP(ImpR+
(F )) is tractable.
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2. Now assume that Γ ⊃ ImpR+
(F ), and hence Γ contains a function φ of

some arity m such that F is not a multimorphism of φ. Hence there exist
d1, d2, . . . , dm ∈ D such that φ(dF , dF , . . . , dF ) > φ(d1, d2, . . . , dm).

If φ(dF , . . . , dF ) < ∞, then set µ = (φ(dF , . . . , dF ) − φ(d1, . . . , dm))/2,
otherwise set µ = 1. Choose some i0 such that di0 6= dF . Now define the
functions δ and ψ as follows:

δ(x1, . . . , xm) =
{

0 if 〈x1, . . . , xm〉 ∈ {〈d1, . . . , dm〉, 〈dF , . . . , dF 〉}
∞ otherwise

ψ(x1, x2, x3) =
{

µ if 〈x1, x2, x3〉 ∈ {〈di0 , di0 , di0〉, 〈di0 , dF , dF 〉}
0 otherwise

Note that δ, ψ ∈ ImpR+
(F ) ⊂ Γ.

We can now construct the instance P ∈ VCSP(Γ) with variables

{X1, . . . , Xm, Y1, . . . , Ym, Z1, . . . , Zm}
and constraints

〈〈X1, . . . , Xm〉, φ〉, 〈〈X1, . . . , Xm〉, δ〉,
〈〈Y1, . . . , Ym〉, δ〉, 〈〈Z1, . . . , Zm〉, δ〉,
〈〈Xi0 , Yi0 , Zi0〉, ψ〉.

If we set W = 〈Yi0 , Zi0〉, then it is straightforward to check that

ΦWP (x, y) =





φ(d1, d2, . . . , dm) if x 6= y ∧ x, y ∈ {dF , di0}
µ + φ(d1, d2, . . . , dm) if x = y ∧ x, y ∈ {dF , di0}
∞ otherwise

Hence, by Proposition 5.1, VCSP(Γ) is NP-hard.

Example 6.5 Recall from Example 2.9 that the Max-Sat optimisation prob-
lem has just three maximal tractable classes, which are identified in [10]. Two
of these can be characterised by having a constant function as a multimorphism;
these are referred to in [10] as ‘0-valid’ relations, and ‘1-valid’ relations2.

6.2 The multimorphism 〈Min, Max〉
The next example we consider is the family of valued constraint languages
over a set D characterised by the presence of a single binary multimorphism,
〈Min, Max〉, where the binary operations Min and Max return the minimum
and maximum values with respect to some fixed total ordering of D. These
languages include the class of submodular set functions used in economics and
operations research [39] (see Example 4.6).

2The third tractable class for the Max-Sat problem is discussed in Example 6.8, below.
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Lemma 6.6 Let D be a finite totally ordered set. A function φ : Dm → R+

has the multimorphism 〈Min, Max〉 if and only if it satisfies the following two
conditions:

• φ is finitely submodular, that is, for all m-tuples s, t, such that φ(s), φ(t) <
∞, we have that

φ(Min(s, t)) + φ(Max(s, t)) ≤ φ(s) + φ(t),

where the operations Min and Max are applied co-ordinatewise.

• Feas(φ) has the polymorphisms Min and Max.

Proof: If φ has the multimorphism 〈Min, Max〉, then these two properties
follow immediately from Definition 4.3 and Proposition 4.10.

Conversely, if φ is finitely submodular, then it satisfies Equation 1 of Defin-
ition 4.3 for all choices of t1 and t2.

The second condition in Lemma 6.6 implies that the set of m-tuples on which
φ is finite is a sublattice of the set of all m-tuples, where the lattice operations
are the operations Min and Max applied co-ordinatewise. Theorem 49.2 of [45]
states that any real-valued submodular function defined on such a sublattice can
be extended to a submodular function on the full lattice. Hence, by Lemma 6.6,
any function with the multimorphism 〈Min, Max〉 can be expressed as the sum
of a finite-valued submodular function, and a crisp function φR associated with
a relation R which has the polymorphisms Min and Max.

Theorem 6.7 Let D be a finite totally ordered set, and let F : D2 → D2 be the
function defined by F (d, d′) = 〈Min(d, d′), Max(d, d′)〉.

1. The set of functions ImpR+
(F ) is a tractable valued constraint language.

2. Any valued constraint language Γ such that Γ ⊃ ImpR+
(F ) is NP-hard.

Proof: Assume for simplicity that D = {0, 1, 2, . . . , |D| − 1} with the usual
ordering.

1. To establish the tractability of the set of functions in ImpR+
(F ), we show

that this problem can be reduced to the problem of minimising a real-
valued submodular set function [39] over a special family of sets known as
a ring family [44]. This problem can then be solved in polynomial time
using an algorithm due to Schrijver [44].

Let P = (V, D, C,R+) be any instance of VCSP(ImpR+
(F )). By Lemma 6.6,

the feasibility relation corresponding to each constraint in P has the poly-
morphisms Min and Max. Hence the standard constraint satisfaction
problem instance with these relations as crisp constraints can be solved
in polynomial time, using the results of [29]. But this means that we can
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determine in polynomial-time whether or not there is an assignment for
P with finite cost.

If every assignment for P has infinite cost, then we can return an arbitrary
assignment as a solution, and we are done.

Otherwise, we define the set Q = D× V , and associate each assignment s
for P that has finite cost with a subset Qs of Q, defined as follows:

Qs = {〈d, v〉 ∈ Q | v ∈ V ∧ d ≤ s(v)}

Now, it is straightforward to check that for any pair of assignments s and
t with finite cost we have

Qs ∪Qt = QMax(s,t)

Qs ∩Qt = QMin(s,t).

Hence the subsets of Q associated with the assignments of finite cost form a
collection C which is closed under union and intersection. Such a collection
is referred to in [44] as a ring family.

Finally, we define the real-valued function ψ on C, by setting

ψ(Qs) = CostP (s)

Note that, since F is a multimorphism of every cost function in P, for all
S, T ∈ C we have

ψ(S ∪ T ) + ψ(S ∩ T ) ≤ ψ(S) + ψ(T )

Hence, ψ is a real-valued submodular set function defined on the finite
ring family C, and so can be minimised in polynomial-time, using the
algorithm described in [44]. The output of this algorithm is an element
Qs of C corresponding to a solution s to P, so the problem is tractable.

2. Now assume that Γ ⊃ ImpR+
(F ), and hence Γ contains a function φ of

some arity m such that F is not a multimorphism of φ. Hence, there exist
s, s′ ∈ Dm such that

φ(Min(s, s′)) + φ(Max(s, s′)) > φ(s) + φ(s′).

where the operators Min and Max are applied coordinatewise to the tuples
s and s′.

It follows that we can find indexes i and j for which s[i] > s′[i] and
s[j] < s′[j].

We define an m-ary function δ which takes the value 0 on the tuples
s, s′, Max(s, s′) and Min(s, s′), and ∞ in all other cases. Note that δ ∈
ImpR+

(F ) ⊂ Γ.
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Define λ and µ as follows:

λ = min(φ(Min(s, s′)), φ(s) + φ(s′) + 1)
µ = min(φ(Max(s, s′)), φ(s) + φ(s′) + 1)

It is straightforward to check that φ(s) + φ(s′) < λ + µ < ∞.

Now define the binary functions

ζ(x, y) =





µ if (x, y) = (0, s′[i])
λ if (x, y) = (1, s[i])
∞ otherwise

κ(x, y) =





0 if (x, y) = (s[j], 0)
φ(s′) + 1 if (x, y) = (s[j], 1)
φ(s) + 1 if (x, y) = (s′[j], 0)
0 if (x, y) = (s′[j], 1)
∞ otherwise

Note that ζ, κ ∈ ImpR+
(F ) ⊂ Γ.

We can now construct the instance P ∈ VCSP(Γ) with variables

{X, Y, V1, . . . , Vm,W1, . . . , Wm, }
and constraints

〈〈V1, . . . , Vm〉, δ〉, 〈〈W1, . . . , Wm〉, δ〉,
〈〈V1, . . . , Vm〉, φ〉, 〈〈W1, . . . , Wm〉, φ〉,
〈〈Wi, X〉, κ〉, 〈〈Vj , Y 〉, κ〉,
〈〈X, Vi〉, ζ〉, 〈〈Y, Wj〉, ζ〉.

If we set W = 〈X, Y 〉, then it is straightforward to check that

ΦWP (x, y) =





λ + µ + φ(s) + φ(s′) if x 6= y ∧ x, y ∈ {0, 1}
λ + µ + λ + µ if x = y ∧ x, y ∈ {0, 1}
∞ otherwise

Hence, by Proposition 5.1, VCSP(Γ) is NP-hard.

Example 6.8 Recall from Example 2.9 that the Max-Sat optimisation prob-
lem has just three maximal tractable classes, which are identified in [10]. Two
of these can be characterised by having a constant multimorphism (see Ex-
ample 6.5). The third can be characterised by having the multimorphism
〈Min, Max〉; this class is referred to in [10] as the class of ‘2-monotone’ relations,
where it is defined as the class of relations definable by a logical expression of
the form (x1 ∧ x2 ∧ · · · ∧ xp)∨ (y1 ∧ y2 ∧ · · · yq) (where the x and y variables are
not necessarily distinct).
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Example 6.9 It follows from Lemma 4.9 and Example 4.8 that every unary
function has the multimorphism 〈Min, Max〉.

Example 6.10 Let D = {0, 1, . . . , M} be a set of integers. It follows from
Example 6.9 and Theorem 4.5 that the language Γlin defined in Example 3.3,
consisting of all functions on D defined by linear expressions with positive integer
coefficients, also has the multimorphism 〈Min,Max〉.

Example 6.11 A function φ : {0, 1}m → R is called a pseudo-Boolean func-
tion [3]. It is straightforward to check from the table of values that the function
φ defined by φ(x, y) = x(1 − y) has the multimorphism 〈Min, Max〉. It follows
from Example 6.10 and Theorem 4.5 that the language Γ consisting of non-
negative functions on {0, 1} defined by expressions of the form a0 +

∑
i aixi −∑

i,j aijxixj , where the ai and aij are non-negative integers, also has the mul-
timorphism 〈Min,Max〉, and so is tractable by Theorem 6.7.

Example 6.12 It was shown in Example 2.6 that the Minimum k-Terminal
Cut problem can be formulated as an instance of VCSP(Γk) for a language Γk

consisting of crisp unary constraints and the cost function φEQ : {0, 1, . . . , k}2 →
R+ defined in Example 2.6.

In the special case when k = 2, it is straightforward to verify that the
cost function φEQ has the multimorphism 〈Min,Max〉. Using this fact, and
Example 6.9, Theorem 6.7 implies that the Min-Cut problem can be solved in
polynomial time. (Compare with Example 2.11.)

Example 6.13 It follows immediately from Definition 4.3 that a binary func-
tion φ : D2 → R+ has the multimorphism 〈Min, Max〉 if and only if, for all
u, v, x, y ∈ D, with u < x and v < y, we have φ(u, v)+φ(x, y) ≤ φ(u, y)+φ(x, v).

Using this observation, it is straightforward to check that for any finite
set of real values D the following binary functions all have the multimorphism
〈Min, Max〉, and hence any VCSP instance involving constraints with cost func-
tions of these forms is tractable.

δ(x, y) =
{

0 if ax ≤ by + c (for positive constants a, b, c)
∞ otherwise

η(x, y) =
√

x2 + y2

ζ(x, y) = |x− y|r (for r ≥ 1)

Using these observations, and Example 6.9, we conclude that the discrete opti-
misation problem described in Example 1.1 can be solved in polynomial time.
(A more specialised algorithm for binary soft constraints of these kinds, which
runs in cubic time, is given in our previous paper [7].)
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6.3 The multimorphism 〈Max, Max〉
The next example we consider is the family of valued constraint languages
over a set D characterised by the presence of a single binary multimorphism,
〈Max, Max〉, where the binary operation Max returns the maximum value with
respect to some fixed total ordering of D. These languages generalise the crisp
“max-closed” constraint languages introduced and shown to be tractable in [29].

We first show that any function with values in R+ which has the multimor-
phism 〈Max, Max〉 satisfies some simple conditions. For any tuples u, v over an
ordered set D, we will write u ≤ v if and only if u[i] ≤ v[i] for each co-ordinate
position i.

Lemma 6.14 A function φ : Dk → R+ has the multimorphism F : D2 → D2,
where F (d, d′) = 〈Max(d, d′), Max(d, d′)〉 if and only if it satisfies the following
two conditions:

• φ is finitely antitone, that is, for all tuples u, v with φ(u), φ(v) < ∞,

u ≤ v ⇒ φ(u) ≥ φ(v).

• Feas(φ) has the polymorphism Max.

Proof: If φ has the multimorphism F , then for all tuples u, v we have φ(u) +
φ(v) ≥ 2φ(Max(u, v)), which implies that both conditions hold.

Conversely, if φ does not have the multimorphism F , then there exist tuples
u,w such that φ(u) + φ(w) < 2φ(Max(u,w)). Hence, without loss of generality,
we may assume that φ(u) < φ(Max(u,w)). Setting v = Max(u, w) we get u < v
and φ(u) < φ(v). If φ(v) < ∞ then the first condition in the lemma does not
hold, and if φ(v) = ∞, then the second condition fails to hold.

By Lemma 6.14, any function with the multimorphism 〈Max,Max〉 can be
expressed as the sum of a finite-valued antitone function, and a crisp function
φR associated with a relation R which has the polymorphism Max.

Theorem 6.15 Let D be a totally ordered finite set, and let F : D2 → D2 be
the function defined by F (d, d′) = 〈Max(d, d′), Max(d, d′)〉.

1. The set of functions ImpR+
(F ) is a tractable valued constraint language.

2. Any valued constraint language Γ such that Γ ⊃ ImpR+
(F ) is NP-hard.

Proof: Assume for simplicity that D = {0, 1, 2, . . . , |D| − 1} with the usual
ordering.

1. To establish the tractability of ImpR+
(F ), we will give an explicit polynomial-

time algorithm for VCSP(Γ) for any fixed finite subset of ImpR+
(F ).

Let Γ be a finite subset of ImpR+
(F ), and let P = (V,D, C,R+) be any

instance of VCSP(Γ). To each constraint c = 〈σ, φ〉 ∈ C we can associate
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a crisp constraint c̄ = 〈σ,Feas(φ)〉 which allows precisely those tuples of
values t for which φ(t) < ∞. We can then establish arc consistency [37]
in the constraint satisfaction problem formed by these associated crisp
constraints. This is done by successively removing values from the domain
of each variable if they are unsupported, that is, they cannot be extended to
compatible values for all the other variables in the scope of each constraint
containing v. Since Γ is finite, the arity of the constraint relations is
bounded, so arc-consistency can be achieved in polynomial time [37].

For each variable v, let Dv be the domain of v after establishing arc
consistency. If any of these domains are empty, then any assignment for
P has cost ∞, and so any assignment is a solution. Otherwise, let d̄v be
the largest supported value for variable v. These values can be computed
in polynomial time

By Lemma 6.14, each constraint of P is finitely antitone, so assigning d̄v

to each variable v is an optimal solution to P.

2. Now assume that Γ ⊃ ImpR+
(F ), and hence Γ contains a function φ of

some arity m such that F is not a multimorphism of φ. Hence, there exist
s, s′ ∈ Dm such that

2φ(Max(s, s′)) > φ(s) + φ(s′),

where the operator Max is applied coordinatewise to the tuples s and s′.

Set s′′ = Max(s, s′). We have to consider two cases depending on whether
or not φ(s′′) has cost ∞.

Case 1: φ(s′′) < ∞.
Without loss of generality we may assume that φ(s′′) > φ(s). In this
case there must be at least one index i0 for which s[i0] < s′′[i0].
We define an m-ary function δ which takes the value 0 on the tuples
s and s′′, and ∞ in all other cases. Note that δ ∈ ImpR+

(F ) ⊂ Γ.
We also define the binary function ψ as follows

ψ(x, y) =





2φ(s′′) if 〈x, y〉 = 〈s[i0], s[i0]〉
2φ(s) if 〈x, y〉 ∈ {〈s[i0], s′′[i0]〉, 〈s′′[i0], s[i0]〉, 〈s′′[i0], s′′[i0]〉}
∞ otherwise

Note that ψ ∈ ImpR+
(F ) ⊂ Γ.

We can now construct the instance P ∈ VCSP(Γ) with variables

{X1, . . . , Xm, Y1, . . . , Ym}
and constraints

〈〈X1, . . . , Xm〉, φ〉, 〈〈Y1, . . . , Ym〉, φ〉,
〈〈X1, . . . , Xm〉, δ〉, 〈〈Y1, . . . , Ym〉, δ〉,
〈〈Xi0 , Yi0〉, ψ〉.
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If we set W = 〈Xi0 , Yi0〉, then it is straightforward to check that

ΦWP (x, y) =





φ(s′′) + 3φ(s) if x 6= y ∧ x, y ∈ {s[i0], s′′[i0]}
2(φ(s′′) + φ(s)) if x = y ∧ x, y ∈ {s[i0], s′′[i0]}
∞ otherwise

Hence, by Proposition 5.1, VCSP(Γ) is NP-hard.

Case 2: φ(s′′) = ∞.
Consider the relation Feas(φ) containing precisely those tuples for
which the value of φ is finite. Since, by hypothesis, φ(s), φ(s′) < ∞
and φ(s′′) = ∞, we have s, s′ ∈ Feas(φ) and s′′ = Max(s, s′) 6∈
Feas(φ). That is, the relation Feas(φ) does not have the polymor-
phism Max.
Now let LMax be the crisp constraint language over D consisting of all
relations which do have the polymorphism Max. It was shown in [29]
that LMax is a maximal tractable language, and hence the class of
crisp constraint satisfaction problems with constraint relations cho-
sen from LMax ∪ {Feas(φ)} is NP-complete. By representing these
crisp constraints as valued constraints with the corresponding feasi-
bility functions as cost functions, as described in Example 2.4, we can
obtain a polynomial-time reduction from this problem to the decision
problem associated with VCSP(Γ). Hence VCSP(Γ) is NP-hard.

Example 6.16 Let D = {0, 1, 2, . . . , M} be a subset of the integers, and let
Γat be the set of all antitone cost functions over D with costs in R+ \ {∞}.
These cost functions can be used to express a preference for larger values of their
arguments. For example, the ternary function φ, defined by φ(x, y, z) = 3M −√

x2 + y2 + z2, can be used to select a point in D3 which is as far as possible
from the origin. By Lemma 6.14, Γat has the multimorphism 〈Max, Max〉, and
hence is tractable by Theorem 6.15

Example 6.17 The constraint programming language CHIP [47] incorporates
a number of constraint solving techniques for arithmetic and other constraints.
In particular it provides a constraint solver for a restricted class of crisp con-
straints over natural numbers, referred to as basic constraints. These basic
constraints are of two kinds which are referred to as “domain constraints” and
“arithmetic constraints”. The domain constraints are unary constraints which
restrict the value of a variable to some specified finite subset of the natural num-
bers. The arithmetic constraints are unary or binary constraints which have one
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of the following forms:

aX 6= b

aX = bY + c

aX ≤ bY + c

aX ≥ bY + c

where variables are represented by upper-case letters, and constants by lower
case letters. All constants are non-negative, and a is non-zero.

If we represent these crisp constraints as valued constraints with the cor-
responding feasibility functions as cost functions, as described in Example 2.4,
then it is easy to verify that they all have the multimorphism 〈Max, Max〉, and
hence form a tractable valued constraint language, by Theorem 6.15.

Moreover, this tractable language can be extended, as shown in [29], to also
include the feasibility functions of the following non-binary relations, which also
have the multimorphism 〈Max, Max〉.

a1X1 + a2X2 + . . . + arXr ≥ bY + c

aX1X2 . . . Xr ≥ bY + c

(a1X1 ≥ b1) ∨ (a2X2 ≥ b2) ∨ . . . ∨ (arXr ≥ br) ∨ (aY ≤ b)

The tractable language consisting of all crisp constraint functions with the
multimorphism 〈Max,Max〉 will be denoted Γmc.

Example 6.18 By Lemma 6.14 and Theorem 3.4, we can combine the tractable
languages Γat (defined in Example 6.16) and Γmc (defined in Example 6.17)
to obtain the much larger tractable language (Γat ∪ Γmc)∗. In fact, we have
ImpR+

(〈Max, Max〉) = (Γat ∪ Γmc)∗.
This larger tractable language includes functions such as the binary function

φ : D2 → R+ defined by

φ(x, y) =
{

(M − x)(M − y) if x < y
∞ if x ≥ y

This function can be expressed as the sum of the antitone function ψ(x, y) =
(M − x)(M − y), and the function φR< , where R< = {〈x, y〉 | x < y}. It can be
used to express a preference for larger values for x, y provided x < y.

6.4 Majority and minority multimorphisms

The next example we consider is the family of valued constraint languages
over a set D characterised by the presence of a single ternary multimorphism,
〈F1, F2, F3〉, where each component function Fi is a majority operation, defined
as follows.

Definition 6.19 A function f : D3 → D is called a majority operation if, for
all x, y ∈ D,

f(x, x, y) = f(x, y, x) = f(y, x, x) = x.
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Languages with a multimorphism of this kind can be shown to be essentially
crisp, and hence their complexity can be determined by using techniques devel-
oped for the standard constraint satisfaction problem with crisp constraints. In
fact, problems involving such languages can be viewed as a generalisation of the
standard tractable 2-satisfiability problem to larger finite domains.

Proposition 6.20 Any valued constraint language with costs in R+ which has
a multimorphism 〈F1, F2, F3〉, where each Fi is a majority operation, is an es-
sentially crisp language, and is tractable.

Proof: Let Γ be a valued constraint language which has the multimorphism
〈F1, F2, F3〉, and let φ be a k-ary cost function in Γ.

If each Fi is a majority operation, then it follows from Definition 6.19 and
Definition 4.3 that for all x, y ∈ Dk, 3φ(x) ≤ φ(x) + φ(x) + φ(y) and 3φ(y) ≤
φ(y) + φ(y) + φ(x). Hence, if both φ(x) and φ(y) are finite, then we have
φ(x) ≤ φ(y) and φ(y) ≤ φ(x), so they must be equal, which means that φ is
essentially crisp.

Furthermore, for each φ ∈ Γ, the relation Feas(φ) has the polymorphism
F1, which is a majority operation, so it follows from Theorem 5.7 of [26] that
VCSP(Γ) is tractable.

Similar arguments can be used for minority operations, defined as follows:

Definition 6.21 A function f : D3 → D is called a minority operation if, for
all x, y ∈ D,

f(x, x, y) = f(x, y, x) = f(y, x, x) = y.

Proposition 6.22 Any valued constraint language with costs in R+ which has
a multimorphism 〈F1, F2, F3〉, where each Fi is a minority operation, is an es-
sentially crisp language, and is tractable.

Proof: Let Γ be a valued constraint language which has the multimorphism
〈F1, F2, F3〉, and let φ be a k-ary cost function in Γ.

If each Fi is a minority operation, then for all x, y ∈ Dk, we have 3φ(x) ≤
φ(x) + φ(y) + φ(y) and 3φ(y) ≤ φ(y) + φ(x) + φ(x). Hence, if both φ(x) and
φ(y) are finite, then we have φ(x) ≤ φ(y) and φ(y) ≤ φ(x), so they must be
equal, which means that φ is essentially crisp.

Furthermore, for each φ ∈ Γ, the relation Feas(φ) has the polymorphism F1,
which is a minority operation, and hence a Mal’tsev operation (see [13]), so it
follows from Theorem 1 of [13] that VCSP(Γ) is tractable.

6.5 The multimorphism 〈Mjrty1, Mjrty2, Mnrty3〉
The final example we consider is the valued constraint language with costs in
R+ which is characterised by the presence of the single ternary multimorphism
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〈Mjrty1, Mjrty2, Mnrty3〉, where

Mjrty1(x, y, z) =
{

y if y = z
x otherwise.

Mjrty2(x, y, z) =
{

x if x = z
y otherwise.

Mnrty3(x, y, z) =





x if y = z ∧ z 6= x
y if x = z ∧ z 6= y
z otherwise.

Note that Mjrty1 and Mjrty2 are both majority operations3 and Mnrty3 is a
minority operation (see Definitions 6.19 and 6.21).

We will show in this section that any function taking values in R+ which
has this multimorphism has a very simple form. The proof of this fact is rather
involved, but we include it here largely because the result turns out to be es-
sential for the complete classification of the Boolean case in Section 7. Despite
the simplicity of the associated constraint language, we will show that this mul-
timorphism again defines a maximal tractable class.

We first need a technical lemma. For any m-tuple s over a set D, we will
write s[i ← d] to denote the tuple with d ∈ D substituted at position i. In
other words, s[i ← d] is the m-tuple which is identical to s except (possibly) at
position i, where it is equal to d.

Lemma 6.23 A function φ : Dm → R+ can be expressed as a sum of unary
functions if and only if, for all tuples s, t ∈ Dm, and all i = 1, . . . ,m we have
that

φ(s) + φ(t) = φ(s[i ← t[i]]) + φ(t[i ← s[i]]). (7)

Proof: Suppose that φ can be expressed as a sum of unary functions. This
means there exist φ1, . . . , φm such that, for all tuples s = 〈s1, . . . , sm〉 and
t = 〈t1, . . . , tm〉,

φ(s) + φ(t) =
m∑

i=1

(φi(si) + φi(ti))

By rearranging the terms in the summation we get Equation 7.
Conversely, suppose that φ satisfies Equation 7. We will now show that this

implies that φ can be expressed as a sum of unary functions.
Let s0 = 〈s01, . . . , s0m〉 be an m-tuple on which φ achieves its minimum cost,

that is
∀s ∈ Dm, φ(s0) ≤ φ(s). (8)

If φ(s0) = ∞ then φ never takes a finite value so φ(x1, . . . , xm) =
∑m

i=1 ζ(xi)
where ζ(x) = ∞ and the result holds. So we may assume that φ(s0) < ∞.

For i = 1, . . . ,m, let µi be the unary cost function defined by

µi(x) = min{φ(x1, . . . , xm) | xi = x}.
3The operation Mjrty1 is sometimes known as the dual discriminator operation [46].
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and for each x ∈ D choose a witness wx
i ∈ Dm such that wx

i [i] = x, and
φ(wx

i ) = µi(x).
Note that for all tuples 〈x1, . . . , xm〉 with xi = x, we have

µi(x) ≤ φ(x1, . . . , xm). (9)

We now have, for all x ∈ D,

µi(x) + φ(s0) = φ(wx
i ) + φ(s0) by choice of wx

i

= φ(wx
i [i ← s0i]) + φ(s0[i ← wx

i [i]]) by Equation 7
= φ(wx

i [i ← s0i]) + φ(s0[i ← x]) by choice of wx
i

≥ φ(s0) + φ(s0[i ← x]) by Equation 8
so µi(x) ≥ φ(s0[i ← x]) cancelling φ(s0) < ∞

but µi(x) ≤ φ(s0[i ← x]) by Equation 9
and so µi(x) = φ(s0[i ← x])

Now consider an arbitrary tuple s = 〈x1, . . . , xm〉. By applying Equation 7
m− 1 times we obtain:

φ(s) + (m− 1)φ(s0) =
m∑

i=1

φ(s0[i ← xi]) =
m∑

i=1

µi(xi)

Equation 8 ensures that choosing φi(x) = µi(x) − φ(s0), i = 2, . . . ,m is well
defined. Finally, choosing φ1(x) = µ1(x) gives the result.

Using this result we now show that any function which has the multimor-
phism 〈Mjrty1, Mjrty2, Mnrty3〉 can be expressed as a sum of unary functions
and binary functions of the following kind.

Definition 6.24 Let D be a set, and Ω a valuation structure. A crisp binary
function φ : D2 → Ω will be called a permutation restriction if

∀x ∈ D, |{y | φ(x, y) = 0}| ≤ 1 and |{y | φ(y, x) = 0}| ≤ 1.

Theorem 6.25 Let D be a finite set, and let F : D3 → D3 be the function
defined by F (x, y, z) = 〈Mjrty1(x, y, z), Mjrty2(x, y, z), Mnrty3(x, y, z)〉.

A k-ary function φ belongs to the set ImpR+
(F ) if and only if it can be

expressed as a sum of unary functions and permutation restrictions.

Proof: By Theorem 4.5, to show that any function which can be expressed
as the sum of unary functions and permutation restrictions is in ImpR+

(F ) it is
sufficient to show that all unary functions and all permutation restrictions are
in ImpR+

(F ).
Since F is conservative, we know by Lemma 4.9 that F is a multimorphism

of all unary functions.
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Now let π be an arbitrary permutation restriction, and consider the arbi-
trary triples t1, t2 ∈ D3. If any π(t1[i], t2[i]) = ∞ then F trivially satisfies
the inequality ⊕3

i=1π(F (t1)[i], F (t2)[i]) ≤ ⊕3
i=1π(t1[i], t2[i]), so consider the case

where each π(t1[i], t2[i]) < ∞. In this case each t2[i] is determined by the
corresponding t1[i], because π is a permutation restriction. Suppose that two
of the pairs 〈t1[i], t2[i]〉 are equal, say they are both 〈p, q〉, and that the third
pair is 〈r, s〉. Then, by the definition of F , we have that 〈F (t1)[1], F (t2)[1]〉 =
〈F (t1)[2], F (t2)[2]〉 = 〈p, q〉 and that 〈F (t1)[3], F (t2)[3]〉 = 〈r, s〉, so F again sat-
isfies the inequality ⊕3

i=1π(F (t1)[i], F (t2)[i]) ≤ ⊕3
i=1π(t1[i], t2[i]) (with equal-

ity). The only remaining case to consider is when each pair 〈t1[i], t2[i]〉 is dis-
tinct, but in this case the definition of F gives 〈F (t1)[i], F (t2)[i]〉 = 〈t1[i], t2[i]〉, i =
1, 2, 3, and so again ⊕3

i=1π(F (t1)[i], F (t2)[i]) = π(t1[i], t2[i]). Hence F is a mul-
timorphism of any permutation restriction.

Conversely, suppose that φ is a k-ary function in ImpR+
(F ). In the remainder

of the proof we shall establish that φ can be expressed as a sum of unary
functions and permutation restrictions.

Consider the k-ary relation Feas(φ). It follows from Proposition 4.10 that
Feas(φ) must have the three polymorphisms Mjrty1,Mjrty2 and Mnrty3. Any
relation with a majority operation (such as Mjrty1) as a polymorphism is
known to be decomposable into its binary projections [25, 46]. This means
that 〈x1, . . . , xk〉 ∈ Feas(φ) exactly when

∀i, j ∈ {1, . . . , k}, 〈xi, xj〉 ∈ Rij ,

where
Rij = {〈xi, xj〉 | ∃〈x1, x2, . . . , xk〉 ∈ Feas(φ)}.

Furthermore, polymorphisms are preserved under taking projections [26], so
each of the binary relations Rij also has the three polymorphisms Mjrty1,Mjrty2

and Mnrty3.
Binary relations with the polymorphism Mjrty1 have previously been char-

acterised [46], and any such relation is known to have one of the following forms:

• Feas(µ1 + µ2), where µ1, µ2 are unary functions;

• Feas(π), where π is a permutation restriction;

• {〈x, y〉 ∈ D1 ×D2 | (x = d1) ∨ (y = d2)}, for some d1, d2 ∈ D, and some
D1, D2 ⊆ D with |D1| > 1 and |D2| > 1.

Of these three, it is straightforward to check that only the first two have Mnrty3

as a polymorphism. Therefore φ can be expressed as a sum of functions of the
following form:

φ(x1, . . . , xk) = ψ(x1, . . . , xk) +
∑

i∈I

πi(xai , xbi) +
∑

j∈J

µj(xcj ), (10)

where ψ is a cost function taking only finite values, each πi is a permutation
restriction, and each µj is a crisp unary function.
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Let G be the graph with vertices {1, . . . , k} and edges {〈ai, bi〉 | i ∈ I}.
Choose a set M = {m1, . . . ,mr} containing one representative from each con-
nected component of G, and define the function η as follows:

η(y1, . . . , yr)
def= min{φ(x1, . . . , xk) | xmi = yi, i = 1, . . . , r}. (11)

By the choice of M , every vertex 1, . . . , k is connected in G to exactly one mi.
Hence, for any 〈y1, . . . , yr〉 ∈ Dr, we have

|{〈x1, . . . , xk〉 | φ(x1, . . . , xk) < ∞ and xmi = yi, i = 1, . . . , r}| ≤ 1. (12)

Let 〈x1, . . . , xk〉 ∈ Dk, and set 〈y1, . . . , yr〉 = 〈xm1 , . . . , xmr 〉. We have, by
Equation 12, that η(y1, . . . , yr) ≤ φ(x1, . . . , xk), with equality if φ(x1, . . . , xk) is
finite.

It only remains to prove that η can be expressed as a sum of unary functions.
Let 1 ≤ j ≤ r and s = 〈s1, . . . , sr〉, t = 〈t1, . . . , tr〉 ∈ Dr.

First suppose that η(s), η(t) < ∞. Since φ ∈ ImpR+
(F ), and η is expressible

over {φ}, we know by Theorem 4.5 that η ∈ ImpR+
(F ), and hence

η(s) + η(t[j ← sj ]) + η(s[j ← tj ] ≥ η(s) + η(s) + η(t).

Cancelling η(s) < ∞, and using symmetry, we obtain,

η(s[j ← tj ]) + η(t[j ← sj ]) = η(s) + η(t). (13)

Otherwise, without loss of generality we may assume that η(s) = ∞, and
hence φ(x1, . . . , xk) = ∞ for all x1, . . . , xk with 〈xm1 , . . . , xmr 〉 = s. Using
Equation 10, this implies there is some single index i such that φ(x1, . . . , xk) =
∞ for all x1, . . . , xk with xmi = si. Hence Equation 13 holds in this case also,
since both sides equal ∞.

Hence, in all cases, by Lemma 6.23, η can be expressed as a sum of unary
functions.

Corollary 6.26 A function φ : Dm → R+ has the multimorphism
〈Mjrty1, Mjrty2, Mnrty3〉 if and only if it satisfies the following two conditions:

• φ is finitely modular, that is, for all m-tuples s, t, and all i = 1, . . . , m
such that φ(s), φ(t), φ(s[i ← t[i]]), φ(t[i ← s[i]]) < ∞, we have that

φ(s) + φ(t) = φ(s[i ← t[i]]) + φ(t[i ← s[i]]).

• Feas(φ) has the polymorphisms Mjrty1 and Mnrty3.

We will now prove that the set of all functions with the multimorphism
〈Mjrty1, Mjrty2, Mnrty3〉 is a maximal tractable valued constraint language.
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Theorem 6.27 Let D be a finite set, and let F : D3 → D3 be the function
defined by F (x, y, z) = 〈Mjrty1(x, y, z), Mjrty2(x, y, z), Mnrty3(x, y, z)〉.

1. The set ImpR+
(F ) is a tractable valued constraint language.

2. Any valued constraint language Γ such that Γ ⊃ ImpR+
(F ) is NP-hard.

Proof:

1. This is a straightforward application of Theorem 6.25. To solve any in-
stance of VCSP(ImpR+

(F )) we can simply merge each pair of variables
constrained by a permutation restriction (combining the associated unary
constraints appropriately). The resulting VCSP instance has only unary
constraints and so can be solved trivially.

2. Now assume that Γ ⊃ ImpR+
(F ), and hence Γ contains a function φ of

some arity m such that F is not a multimorphism of φ. By Corollary 6.26,
there are 3 cases to consider.

Case 1: φ is not finitely modular
In this case, there exist j ∈ {1, . . . , m}, s = 〈s1, . . . , sm〉, and t =
〈t1, . . . , tm〉 ∈ Dm such that

φ(s) + φ(t) < φ(s[j ← tj ]) + φ(t[j ← sj ])

and all values in the inequality are finite.
For i = 1, 2, . . . , m, we define the following permutation restrictions:

ζi(x, y) =





0 if x = s1, y = si

0 if x = t1, y = ti
∞ otherwise

κi(x, y) =





0 if x = s1, y = ti
0 if x = t1, y = si

∞ otherwise

Note that each ζi and each κi ∈ ImpR+
(F ) ⊂ Γ.

We can now construct the instance P ∈ VCSP(Γ) with variables

{X1, . . . , Xm, Y1, . . . , Ym, Z}
and constraints

〈〈X1, Y1〉, κ1〉,
〈〈X1, . . . , Xm〉, φ〉, 〈〈Y1, . . . , Ym〉, φ〉,
〈〈Z, Xj〉, κj〉, 〈〈Z, Yj〉, ζj〉,
〈〈X1, Xi〉, ζi〉 (i = 1, 2, . . . , j − 1, j + 1, . . . , m),
〈〈Y1, Yi〉, ζi〉 (i = 1, 2, . . . , j − 1, j + 1, . . . , m).

If we set W = 〈X1, Z〉, then it is straightforward to check that

ΦWP (x, y) =





φ(s) + φ(t) if x 6= y ∧ x, y ∈ {s1, t1}
φ(s[j ← tj ]) + φ(t[j ← sj ]) if x = y ∧ x, y ∈ {s1, t1}
∞ otherwise.

Hence, by Proposition 5.1, VCSP(Γ) is NP-hard.
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Case 2: Feas(φ) does not have the polymorphism Mjrty1

Let Feas(Γ) = {Feas(ψ) | ψ ∈ Γ}, and let P be the set of all
polymorphisms of Feas(Γ). Since Γ contains all permutation re-
strictions, the algebra whose set of operations is P is homogeneous,
as defined in [46]. A complete description of all homogeneous fi-
nite algebras is given in Chapter 5 of [46] and it is straightfor-
ward to verify4 from this that if P does not contain the operation
Mjrty1, then every element of P is a polymorphism of the rela-
tion R = {〈d0, d0, d0〉, 〈d0, d1, d1〉, 〈d1, d0, d1〉, 〈d1, d1, d0〉}, for some
d0, d1 ∈ D.
Hence, by Theorem 4.10 of [24], the relation R can be expressed using
some finite combination of relations from Feas(Γ). This implies that
Γ∗ contains a function φ such that φ(s) < ∞ exactly when s ∈ R.
Now set

α = ψ(d0, d1, d1) + ψ(d1, d0, d1) < ∞
β = ψ(d1, d1, d0) + ψ(d0, d0, d0) < ∞.

We define the binary permutation restriction π and the unary func-
tion µ as follows:

π(x, y) =
{

0 if x = d0, y = d1 or x = d1, y = d0

∞ otherwise.

µ(x) =





α + 1 if x = d0

0 if x = d1

∞ otherwise.

We can now construct the instance P ∈ VCSP(Γ) with variables

{X, Y, Z, X ′, Y ′}

and constraints

〈〈X, Y, Z〉, ψ〉, 〈〈X ′, Y ′, Z〉, ψ〉,
〈〈X, X ′〉, π〉, 〈〈Y, Y ′〉, π〉,
〈〈Z〉, µ〉.

If we set W = 〈X, Y 〉, then it is straightforward to check that

ΦWP (x, y) =





α if x 6= y ∧ x, y ∈ {d0, d1}
α + β + 1 if x = y ∧ x, y ∈ {d0, d1}
∞ otherwise.

Hence, by Proposition 5.1, VCSP(Γ) is NP-hard.

4This is stated explicitly in Lemma 5.6 of [46] for the case when |D| ≥ 5; the remaining 3
cases can be checked individually.
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Case 3: Feas(φ) has the polymorphism Mjrty1, but not Mnrty3.
As indicated in the proof of Theorem 6.25, relations with the poly-
morphism Mjrty1 are known to be decomposable into binary relations
of 3 distinct types [46], and the only one of these types which does
not have the polymorphism Mnrty3 is the set of relations of the form
{〈x, y〉 ∈ D1 ×D2 | (x = d1) ∨ (y = d2)}, for some d1, d2 ∈ D, and
some D1, D2 ⊆ D with |D1| > 1 and |D2| > 1.
Now define the binary relation Rij = {〈xi, xj〉 | ∃〈x1, x2, . . . , xm〉 ∈
Feas(φ)}. It follows from the observations just made that we can
choose a pair of indices i and j and a, b, c, d ∈ D with a 6= b, c 6= d,
such that 〈a, c〉, 〈b, d〉, 〈b, c〉 ∈ Rij , and 〈a, d〉 6∈ Rij . Hence, if we
define the function φ′ by setting

φ′(x, y) = min{φ(z1, . . . , zm) | x = zi, y = zj}
then we have φ′(a, c), φ′(b, d), φ′(b, c) < ∞, and φ′(a, d) = ∞.
Now define the functions:

ζ(x) =





φ′(b, d) if x = a
φ′(a, c) + φ′(b, d) + 1 if x = b
∞ otherwise

κ(x) =





2(φ′(b, d) + 1) if x = c
0 if x = d
∞ otherwise

τ(x, y) =
{

0 if {x, y} = {a, b}
∞ otherwise

Note that τ, κ, ζ ∈ ImpR+
(F ) ⊂ Γ and φ′ ∈ Γ∗.

We can now construct the instance P ∈ VCSP(Γ∗) with variables

{X,Y, Z, Z}
and constraints

〈〈X, Y 〉, φ′〉, 〈〈Z, Y 〉, φ′〉,
〈〈X〉, ζ〉, 〈〈Z〉, ζ〉,
〈〈Y 〉, κ〉, 〈〈Z, Z〉, τ〉.

If we set W = 〈X, Z〉, then it is straightforward to check that

ΦWP (x, y) =





2φ′(a, c) + 4φ′(b, d) + 2 if x 6= y, x, y ∈ {a, b}
2φ′(a, c) + 4φ′(b, d) + φ′(b, c) + 3 if x = y, x, y ∈ {a, b}
∞ otherwise.

Hence, by Proposition 5.1, VCSP(Γ) is NP-hard.
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7 The Boolean Case

Recall from Example 2.9 that a valued constraint language over the set {0, 1}
is called a valued Boolean constraint language. In this section we will show
that every tractable valued Boolean constraint language with costs in R+ is
characterized by the presence of a certain form of multimorphism. In fact we
establish a dichotomy result: if a valued Boolean constraint language with costs
in R+ has one of eight specified multimorphisms then it is tractable, otherwise
it is NP-hard.

Theorem 7.1 Let Γ be a valued Boolean constraint language with costs in R+.
If Γ has one of the following multimorphisms then VCSP(Γ) is tractable:

1. 〈0〉, where 0 is the constant unary function returning the value 0;

2. 〈1〉, where 1 is the constant unary function returning the value 1;

3. 〈Max, Max〉, where Max is the binary function returning the maximum of
its arguments (i.e., Max(x, y) = x ∨ y);

4. 〈Min, Min〉, where Min is the binary function returning the minimum of
its arguments (i.e., Min(x, y) = x ∧ y);

5. 〈Min, Max〉;
6. 〈Mjrty, Mjrty, Mjrty〉, where Mjrty is the unique ternary majority function

on the set {0, 1};
7. 〈Mnrty, Mnrty, Mnrty〉, where Mnrty is the unique ternary minority func-

tion on the set {0, 1};
8. 〈Mjrty, Mjrty, Mnrty〉;

In all other cases VCSP(Γ) is NP-hard.

To establish the first part of Theorem 7.1, we must show that a valued
Boolean constraint language which has one of the eight types of multimorphisms
listed in the theorem is tractable.

The tractability of any valued constraint language which has the multimor-
phism 〈0〉 or 〈1〉 was established in Theorem 6.4. Furthermore, the tractability
of any valued constraint language which has the multimorphism 〈Max, Max〉
was established in Theorem 6.15, and a symmetric argument (with the do-
main ordering reversed) establishes the tractability of any valued constraint
language with the multimorphism 〈Min,Min〉. The tractability of any valued
constraint language which has the multimorphism 〈Min,Max〉 was established
in Theorem 6.7. The tractability of any valued constraint language which has
the multimorphism 〈Mjrty, Mjrty, Mjrty〉 was established in Proposition 6.20,
and the tractability of any valued constraint language which has the multimor-
phism 〈Mnrty,Mnrty, Mnrty〉 was established in Proposition 6.22. Finally, the
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tractability of any valued Boolean constraint language which has the multimor-
phism 〈Mjrty, Mjrty, Mnrty〉 follows immediately from Theorem 6.27.

To establish the remaining part of Theorem 7.1, we must show that a valued
Boolean constraint language with costs in R+ which does not have any of the
types of multimorphisms listed in the theorem is NP-hard. We first deal with
essentially crisp languages.

Lemma 7.2 Any valued Boolean constraint language which is essentially crisp
and does not have any of the multimorphisms listed in Theorem 7.1 is NP-hard.

Proof: If we replace each cost function φ in Γ with the relation Feas(φ) then
we obtain a crisp Boolean constraint language Γ′ which does not have any of
the polymorphisms 0,1, Min,Max, Mjrty or Mnrty.

By Schaefer’s Dichotomy Theorem [42, 26], Γ′ is NP-complete, and hence Γ
is NP-hard.

For the remaining languages, our strategy will be to show that any language
which does not have one of the multimorphisms listed in Theorem 7.1 can express
certain special functions, which we now define.

Definition 7.3

• A unary function σ on the set {0, 1} is a 0-selector if

σ(0) < σ(1)

and it is a finite 0-selector if, in addition, σ(1) < ∞.

A (finite) 1-selector is defined analogously. A selector is either a 1-
selector or a 0-selector.

• A binary function φ on the set {0, 1} is a NEQ function if

φ(0, 1) = φ(1, 0) < φ(1, 1) = φ(0, 0) = ∞.

• A binary function φ on the set {0, 1} is an XOR function if

φ(0, 1) = φ(1, 0) < φ(1, 1) = φ(0, 0) < ∞.

Lemma 7.4 Let Γ be a valued Boolean constraint language with costs in R+

which is not essentially crisp.
If Γ∗ contains a NEQ function, then either Γ∗ contains both a finite 0-selector

and a finite 1-selector, or else Γ∗ contains an XOR function.

Proof: Let ν ∈ Γ∗ be a NEQ function.
First we show that if Γ∗ contains a finite 0-selector σ0, then it also contains

a finite 1-selector. To see this, simply construct the instance P0 with variables
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{x, y} and constraints {〈〈x〉, σ0〉, 〈〈x, y〉, ν〉}, and note that Φ〈y〉P0
is a finite 1-

selector. Similarly, if Γ∗ contains a finite 1-selector, then it also contains a finite
0-selector.

Now let ζ ∈ Γ be a cost function of arity m which is not essentially crisp.
Choose tuples u, v such that ζ(u) and ζ(v) are as small as possible with ζ(u) <
ζ(v) < ∞. Let P be the VCSP instance with four variables: {x00, x01, x10, x11},
and three constraints:

〈〈xu[1]v[1], . . . , xu[m]v[m]〉, ζ〉, 〈〈x00, x11〉, ν〉, 〈〈x01, x10〉, ν〉.

Let W = 〈x01, x11〉, and ψ = ΦWP .
Note that the arity-m cost function ζ is applied to only four variables by

repeating arguments. Note also that ψ(0, 1) = ζ(u) + 2ν(0, 1) and ψ(1, 1) =
ζ(v) + 2ν(0, 1). If ψ(0, 1) 6= ψ(1, 0), then, by the choice of u, ψ(0, 1) < ψ(1, 0),
and ψ(0, 1) < ψ(1, 1) < ∞, so Φ〈x01〉

P is a finite 0-selector.
Hence we may assume that ψ(0, 1) = ψ(1, 0). If ψ(0, 0) 6= ψ(1, 1), then

if ψ(0, 0) < ∞ the function ψ(x, x) is a finite selector, and hence Γ∗ con-
tains both a finite 0-selector and a finite 1-selector. On the other hand, if
ψ(0, 0) = ∞ then construct the instance P2 with variables {x, y} and con-
straints {〈〈x, x〉, ψ〉, 〈〈x, y〉, ψ〉}. In this case Φ〈y〉P2

is a finite 0-selector, and
hence Γ∗ again contains both a finite 0-selector and a finite 1-selector.

Otherwise we may assume that ψ(0, 1) = ψ(1, 0) and ψ(0, 0) = ψ(1, 1). By
construction, we have ψ(0, 1) = ζ(u)+2ν(0, 1) < ζ(v)+2ν(0, 1) = ψ(1, 1) < ∞.
So in this case ψ is an XOR function.

Lemma 7.5 Let Γ be a valued Boolean constraint language with costs in R+

which is not essentially crisp, and does not have either of the multimorphisms
〈0〉 or 〈1〉.

Either Γ∗ contains a 0-selector and a 1-selector, or else Γ∗ contains an XOR
function.

Proof: Let φ0 ∈ Γ be a function which does not have the multimorphism 〈0〉,
and φ1 ∈ Γ be a function which does not have the multimorphism 〈1〉, and let
m be the arity of φ0. Choose a tuple r such that φ0(r) is the minimal value of
φ0. By the choice of φ0, we have φ0(r) < φ0(0, 0, . . . , 0).

Suppose first that Γ∗ contains a 0-selector σ0. Let M be a finite natural
number which is larger than all finite values in the range of φ0. We construct
the instance P ∈ VCSP(Γ) with two variables {x0, x1}, and two constraints
〈〈xr[1], . . . , xr[m]〉, φ0〉 and 〈〈x0〉,Mσ0〉. (The cost function Mσ0 is simply equiv-
alent to taking M copies of a constraint with cost function σ0.) It is straight-
forward to check that Φ〈x1〉

P (1) < Φ〈x1〉
P (0), and so in this case Γ∗ contains a

1-selector. A similar argument, using φ1, shows that if Γ∗ contains a 1-selector,
then it also contains a 0-selector.
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Hence, we need to show that either Γ∗ contains a selector, or it contains an
XOR function. If φ0(0, . . . , 0) 6= φ0(1, . . . , 1) then the unary function σ(x) =
φ0(x, . . . , x) in Γ∗ is clearly a selector, and the result holds.

Otherwise, we construct the instance P ′ ∈ VCSP(Γ) with two variables
{x0, x1} and the single constraint 〈〈xr[1], . . . , xr[m]〉, φ0〉. Now, by considering
the costs of all four possible assignments, we can verify that either Φ〈x0〉

P ′ or Φ〈x1〉
P ′

is a selector, or else ν = Φ〈x0,x1〉
P ′ is either an XOR function, or a NEQ function.

If ν is an XOR function we are done, otherwise we appeal to Lemma 7.4 to
complete the proof.

Many of the remaining lemmas in this Section use the following construction
which combines a given function φ of arbitrary arity with a pair of selectors, in
order to express a binary function with some similar properties.

Construction 7.6 Let φ : Dm → R+ be an m-ary function which is not iden-
tically infinite, and let σ0 be a 0-selector and σ1 a 1-selector. Let u, v be two
m-tuples, and let M be a natural number larger than all finite values in the
range of φ.

Let P be a VCSP instance with variables {x00, x01, x10, x11}, and constraints:

〈〈xu[1]v[1], . . . , xu[m]v[m]〉, φ〉, 〈〈x00〉,Mσ0〉, 〈〈x11〉,Mσ1〉.

The binary function φ2
def= Φ〈x01,x10〉

P will be called a compression of φ by u
and v.

Lemma 7.7 Let Γ be a valued Boolean constraint language with costs in R+

which is not essentially crisp, and does not have any of the multimorphisms 〈0〉
or 〈1〉 or 〈Max,Max〉 or 〈Min, Min〉.

Either Γ∗ contains a finite 0-selector and a finite 1-selector, or else Γ∗ con-
tains an XOR function.

Proof: Let φ be a function in Γ which does not have a 〈Max, Max〉 mul-
timorphism, and let ψ be a function in Γ which does not have a 〈Min,Min〉
multimorphism.

By Lemma 7.5, either Γ∗ contains an XOR function and we have nothing to
prove, or else Γ∗ contains a 0-selector, σ0, and a 1-selector, σ1.

Since φ does not have a 〈Max,Max〉multimorphism, it follows from Lemma 6.14
that either φ is not finitely antitone, or else the relation Feas(φ) does not have
the polymorphism Max.

For the first case, choose two tuples u and v, with u < v with φ(u) < φ(v) <
∞, and let φ2 be a compression of φ by u and v (see Construction 7.6). It
is straightforward to check that φ2(0, 0) < φ2(1, 1) < ∞, which means that
φ2(x, x) is a finite 0-selector belonging to Γ∗.

On the other hand suppose that φ is finitely antitone, and that Γ∗ con-
tains a finite 1-selector τ . In this case we know that Feas(φ) does not have
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the polymorphism Max, so we can choose u, v such that φ(u), φ(v) < ∞ and
φ(Max(u, v)) = ∞. Let φ2 be a compression of φ by u and v, and construct the
instance P ∈ VCSPΓ∗ with variables {x, y}, and constraints:

〈〈x, y〉, φ2〉, 〈〈y, x〉, φ2〉, 〈〈y〉, τ〉.
The fact that φ is finitely antitone gives φ(u), φ(v) ≤ φ(Min(u, v)). This, to-
gether with the fact that φ(u) and φ(v) are finite whilst φ(Max(u, v)) is infinite,
is enough to show that Φ〈x〉P is a finite 0-selector.

So, we have shown that if Γ∗ contains a finite 1-selector, then it contains a
finite 0-selector whether or not φ is finitely antitone. A symmetric argument,
exchanging 0 and 1, Max and Min, and φ and ψ, shows that if Γ∗ contains a
finite 0-selector, then it contains a finite 1-selector.

Hence, to complete the proof we may assume that Γ∗ contains no finite
selectors. In this case we know that Feas(φ) does not have the polymorphism
Max and Feas(ψ) does not have the polymorphism Min, so we may choose tuples
u, v, w, z such that φ(u), φ(v), ψ(w) and ψ(z) are all finite, but φ(Max(u, v))
and ψ(Min(w, z)) are both infinite. Now let φ2 be a compression of φ by u

and v, and ψ2 a compression of ψ by w and z We then have that ρ(x, y) def=
φ2(x, y) + φ2(y, x) + ψ2(x, y) + ψ2(y, x) is a NEQ function which is contained
in Γ∗. We can now appeal to Lemma 7.4 to show that Γ∗ contains an XOR
function, and we are done.

Lemma 7.8 Let Γ be a valued Boolean constraint language with costs in R+

which does not have the multimorphism 〈Min,Max〉.
If Γ∗ contains both a finite 0-selector and a finite 1-selector, then Γ∗ contains

a NEQ function or an XOR function.

Proof: Let φ be a function in Γ that does not have the multimorphism
〈Min, Max〉. Choose u, v such that φ(Min(u, v)) + φ(Max(u, v)) > φ(u) + φ(v).
Let φ2 be a compression of φ by u and v. It is straightforward to check that the
binary function φ2 also does not have the multimorphism 〈Min,Max〉.

It follows that

φ2(0, 0) + φ2(1, 1) > φ2(0, 1) + φ2(1, 0). (14)

Without loss of generality, suppose that φ2(0, 0) ≥ φ2(1, 1). (The proof for the
case φ2(0, 0) > φ2(1, 1) is symmetrically equivalent.)

From Equation (14), we have

2φ2(0, 0)− [φ2(0, 1) + φ2(1, 0)] > [φ2(0, 1) + φ2(1, 0)]− 2φ2(1, 1)

with 2φ2(0, 0)− [φ2(0, 1) + φ2(1, 0)] > 0.
Now let σ0 ∈ Γ∗ be a finite 0-selector, and set λ = σ0(1) − σ0(0). Since

λ > 0, it is possible to choose a non-negative rational number N
M such that

2φ2(0, 0)− [φ2(0, 1) + φ2(1, 0)] >
N

M
λ > [φ2(0, 1) + φ2(1, 0)]− 2φ2(1, 1).
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Construct an instance P ∈ VCSP (Γ∗) with variables {x, u, v, y}, and constraints

〈〈x, u〉,Mφ2〉, 〈〈u, x〉,Mφ2〉,
〈〈u, v〉, Mφ2〉, 〈〈v, u〉,Mφ2〉,
〈〈v, y〉, Mφ2〉, 〈〈y, v〉,Mφ2〉,
〈〈x〉, Nσ0〉, 〈〈u〉, 2Nσ0〉,
〈〈v〉, 2Nσ0〉, 〈〈y〉, Nσ0〉.

If we set W = 〈x, y〉, and η = ΦWP , then it is straightforward to verify that
η(0, 1) = η(1, 0), η(0, 0) = η(1, 1), and

η(0, 0) = η(0, 1) + M min{2φ2(0, 0)− [φ2(0, 1) + φ2(1, 0)]− N

M
λ,

N

M
λ− [φ2(0, 1) + φ2(1, 0)]− 2φ2(1, 1)}

> η(0, 1).

If φ2(1, 1) = ∞, then η(0, 0) = ∞ and hence η is a NEQ function. If φ2(1, 1) <
∞, then η(0, 0) < ∞ and hence η is an XOR function.

Lemma 7.9 Let Γ be a valued Boolean constraint language with costs in R+

which does not have the multimorphism 〈Mjrty, Mjrty, Mnrty〉.
If Γ∗ contains a finite 0-selector, a finite 1-selector, and a NEQ function,

then Γ∗ contains an XOR function.

Proof: Suppose that σ0 ∈ Γ∗ is a finite 0-selector, σ1 ∈ Γ∗ is a finite 1-
selector, ν ∈ Γ∗ is a NEQ function, and φ ∈ Γ does not have the multimorphism
〈Mjrty, Mjrty, Mnrty〉. We have to show that Γ∗ also contains an XOR function.

By Corollary 6.26 there are 2 cases: either φ is not finitely modular, or
Feas(φ) does not have both polymorphisms Mjrty and Mnrty.

In the first case, choose tuples u, v such that φ(u) + φ(v) 6= φ(Min(u, v)) +
φ(Max(u, v)). Let φ2 be a compression of φ by u and v. It is straightforward to
check that φ2 is also not finitely modular. Now construct the instance P with
variables {w, x, y, z}, and constraints

〈〈x,w〉, ν〉, 〈〈z, y〉, ν〉, 〈〈x, z〉, φ2〉, 〈〈w, y〉, φ2〉.

It is straightforward to check that either Φ〈x,y〉
P or Φ〈w,y〉

P is an XOR function.
Next, suppose that Feas(φ) has the polymorphism Mjrty but not Mnrty. In

this case, by Theorem 3.5 of [25], Feas(φ) is decomposable into binary relations
(in other words, it is equal to the relational join of its binary projections). Since
Feas(φ) does not have the Mnrty polymorphism, this implies that one of its
binary projections does not have the Mnrty polymorphism. The only binary
Boolean relations which do not have the Mnrty polymorphism have exactly
three tuples. Therefore, by projection, it is possible to construct from φ a
binary function ψ such that exactly three of ψ(0, 0), ψ(0, 1), ψ(1, 0), ψ(1, 1) are
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finite. If ψ(0, 1) or ψ(1, 0) is infinite, then let η be the projection onto variables
x, y of ψ(x, v) + ν(v, y), otherwise let η = ψ. The function η does not have the
multimorphism 〈Min, Max〉, and exactly one of η(0, 0) and η(1, 1) are infinite,
and so, by the construction in the proof of Lemma 7.8, Γ∗ contains an XOR
function.

Suppose now that Feas(φ) has the polymorphism Mnrty but not Mjrty.
Since Feas(φ) has the polymorphism Mnrty, it is an affine relation [10] over the
finite field with 2 elements, GF(2), and can be expressed as a system of linear
equations over GF(2). Creignou et al. define a Boolean relation to be affine with
width 2 if it can be expressed as a system of linear equations over GF(2), with at
most two variables per equation [10]. In fact, linear equations over GF(2) with
one variable correspond to the unary relations, and linear equations over GF(2)
with two variables correspond to the binary equality and disequality relations.
The unary relations, and the binary equality and disequality relations all have
both the Mjrty and Mnrty polymorphisms. Thus Feas(φ) is affine but not of
width 2. Hence, by Lemma 5.34 of [10], Feas(φ) can be used to construct the
4-ary affine constraint w + x + y + z = 0. In other words, there is some ψ ∈ Γ∗

such that ψ(w, x, y, z) < ∞ iff w + x + y + z = 0.
Now set λ = ψ(0, 0, 1, 1) + ψ(0, 1, 0, 1) + 1 and construct the VCSP instance

P with variables {w, x, y, z}, and constraints

〈〈w, x, y, z〉, ψ〉, 〈〈w〉, 3Mσ0〉, 〈〈z〉, λσ1〉

where M is a natural number larger than the square of any finite value in the
range of ψ or σ1. Let η = Φ〈x,y〉

P . It is straightforward to verify that η is a
binary function where both η(0, 0) and η(1, 1) are finite, and it does not have
the multimorphism 〈Min, Max〉. Hence, by the construction in the proof of
Lemma 7.8, the result follows in this case also.

Finally, if Feas(φ) has neither the polymorphism Mnrty nor Mjrty, then the
set of Boolean relations {Feas(φ), Feas(ν)} can be shown to have essentially
unary polymorphisms only (see Theorem 4.12 of [24]). By Theorem 4.10 of [24],
this implies that in this case Feas(φ) can again be used to construct the 4-ary
affine constraint w + x + y + z = 0, and we can proceed as above.

Lemma 7.10 Let Γ be a valued Boolean constraint language with costs in R+

which does not have any of the multimorphisms listed in Theorem 7.1.
Either Γ is essentially crisp, or else Γ∗ contains an XOR function.

Proof: Suppose that Γ is not essentially crisp and has none of the multimor-
phisms listed in Theorem 7.1. By Lemmas 7.8 and 7.7, either Γ∗ contains an
XOR function, or else Γ∗ contains a NEQ function and a finite 0-selector and a
finite 1-selector. In the latter case, by Lemma 7.9 we know that Γ∗ contains an
XOR function.
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Combining Lemmas 7.2 and 7.10, together with Proposition 5.1, establishes
the NP-hardness of any valued Boolean constraint language having none of the
multimorphisms listed in Theorem 7.1, and so completes the proof of Theo-
rem 7.1.

For valued Boolean constraint languages taking finite values only, some of the
tractable cases identified in Theorem 7.1 coincide, as the next result indicates.

Corollary 7.11 Let Γ be a valued Boolean constraint language where all costs
are finite real values. If Γ has one of the multimorphisms 〈0〉, 〈1〉, or 〈Min, Max〉,
then VCSP(Γ) is tractable. In all other cases VCSP(Γ) is NP-hard.

Proof: Let φ be a function taking finite values in R+ only. By Lemma 6.14,
if φ has the multimorphism 〈Max, Max〉, then φ is antitone, and hence has the
multimorphism 〈1〉. By a symmetric argument, if φ has the multimorphism
〈Min, Min〉, then φ is monotone, and hence has the multimorphism 〈0〉. By
Proposition 6.20, if φ has the multimorphism 〈Mjrty, Mjrty,Mjrty〉, then φ is
constant, and hence has the multimorphism 〈0〉. Similarly, by Proposition 6.22,
if φ has the multimorphism 〈Mnrty,Mnrty, Mnrty〉, then φ is again constant,
and hence has the multimorphism 〈0〉. By Corollary 6.26, if φ has the mul-
timorphism 〈Mjrty,Mjrty,Mnrty〉, then φ is modular, and hence it has the
multimorphism 〈Min, Max〉. The result now follows from Theorem 7.1.

We now show that Theorem 7.1 generalises a number of earlier dichotomy
results for particular Boolean problems [10, 30, 42]. Let S be a set of Boolean
relations: the problem Sat(S) is the problem of deciding whether there exists an
assignment s : V → {0, 1} which satisfies a given collection of crisp constraints
with relations chosen from S. The problem Max-Sat(S) is the problem of
finding an assignment which maximises the number of constraints from such
a collection which are simultaneously satisfied. The problem Min-Ones(S)
is the problem of deciding whether there exists an assignment which satisfies
a given collection of crisp constraints with relations chosen from S, and if so
finding such an assignment which minimises the number of variables taking the
value 1. In the slightly more general weighted Min-Ones(S) problem the aim
is to minimise a specified weighted sum,

∑
v∈V wvs(v), where the wv are non-

negative integers [10, 30]. Similarly, the problem Max-Ones(S) is the problem
of deciding whether there exists an assignment which satisfies a given collection
of crisp constraints with relations chosen from S, and if so finding such an
assignment which maximises the number of variables taking the value 1. In the
weighted Max-Ones(S) problem the aim is to maximise a specified weighted
sum,

∑
v∈V wvs(v), where the wv are non-negative integers [10, 30].

Corollary 7.12 Let S be a set of Boolean relations and let ΓS = {φR | R ∈ S}
be the corresponding crisp valued constraint language over {0, 1}.

1. Sat(S) can be solved in polynomial time if S has one of the polymorphisms
0,1, Min,Max, Mnrty, or Mjrty. Otherwise it is NP-complete.
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2. Max-Sat(S) can be solved in polynomial time if ΓS has one of the mul-
timorphisms 〈0〉, 〈1〉, or 〈Min,Max〉. Otherwise it is NP-hard.

3. Weighted Min-Ones(S) can be solved in polynomial time if ΓS has one of
the multimorphisms 〈0〉, 〈Min, Min〉, or 〈Mjrty, Mjrty,Mnrty〉. Otherwise
it is NP-hard.

4. Weighted Max-Ones(S) can be solved in polynomial time if ΓS has one
of the multimorphisms 〈1〉, 〈Max, Max〉, or 〈Mjrty, Mjrty, Mnrty〉. Oth-
erwise it is NP-hard.

Proof:

1. Follows immediately from Theorem 7.1 and Proposition 4.10.

2. Follows from Corollary 7.11 and Example 2.9.

3. Let φ1 : {0, 1} → R+ be the function defined by φ1(x) = x. By Exam-
ple 3.3, the problem VCSP({φ1}) is equivalent to the problem of min-
imising a linear expression of the form

∑
v∈V wvs(v), where the wv are

non-negative integers. Hence, weighted Min-Ones(S) can be expressed
as VCSP(ΓS ∪ {φ1}). The function φ1 is contained in exactly 4 of the
tractable classes identified in Theorem 7.1 (cases 1,4,5 and 8), so the prob-
lem VCSP(ΓS∪{φ1}) is tractable when ΓS has one of the multimorphisms
〈0〉, 〈Min, Min〉, 〈Min, Max〉, or 〈Mjrty, Mjrty, Mnrty〉, and NP-hard oth-
erwise. Finally, by Proposition 4.10, if a crisp language has the multimor-
phism 〈Min,Max〉 then it also has the multimorphism 〈Min,Min〉.

4. Similar to (3), but using the function φ′1 defined by φ′1(x) = 1− x.

Corollary 7.12 gives an alternative and more unified description of the tractable
cases for these problems to the ones given previously in [10, 30, 42].

Finally, we note that the dichotomy described in Theorem 7.1 can be ex-
pressed in a more concise form using earlier results about crisp Boolean con-
straints and Theorem 5.4.

Corollary 7.13 Let Γ be a valued Boolean constraint language with costs in
R+. If Γ has a non-trivial multimorphism then it is tractable. Otherwise it is
NP-hard.

Proof: Earlier results about crisp Boolean constraint languages show that
a crisp Boolean language is tractable if it has a polymorphism which is not
essentially unary, and NP-complete otherwise (see, for example, Corollary 2.29
of [6]). Using the relationship between polymorphisms and multimorphisms set
out in Proposition 4.10, and the fact that multimorphisms are preserved by
addition of a constant, this implies that the result holds when Γ is essentially
crisp.
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If Γ is not essentially crisp, then by Lemma 7.10, either Γ has a non-trivial
multimorphism, and is tractable for one of the reasons described earlier, or else
Γ∗ contains an XOR function.

If Γ∗ contains an XOR function, then by Corollary 5.5, every multimorphism
of Γ is trivial.

8 Conclusions and Future Work

In this paper we have begun a systematic investigation of the complexity of the
optimisation problems resulting from different forms of soft constraint. Since
soft constraints are specified by functions, we have introduced an algebraic prop-
erty of a function, which we call a multimorphism, and shown that in a range
of cases the presence of such a property is sufficient to ensure tractability.

Moreover, we have shown that the presence of a multimorphism precisely
characterises a number of tractable problem classes that appear on the surface
to be very different. These tractable classes are listed in Section 6; as indicated
by the examples given in that section, they are overlapping, but incomparable,
in the sense that none is contained in any of the others (see Figure 2). In
the Boolean case, when the costs are real-valued or infinite, we have shown
that the presence of one of eight forms of multimorphism characterises each of
the possible tractable cases, and that all other cases are NP-hard. This result
generalises earlier complexity classifications for the Satisfiability, Max-Sat,
Min-Ones and Max-Ones problems.

On the basis of the results presented here, we conjecture that the multimor-
phisms of a valued constraint language over a finite set completely determine its
expressive power, and hence its complexity. If this is true, then multimorphisms
are likely to play a central role in the analysis of complexity for soft constraints,
just as the related notion of a polymorphism does in the analysis of complexity
for crisp constraints [4, 6, 5, 26, 27, 28].

To define any form of soft constraint we must specify the set of possible
values for the costs, and the way in which these are combined. In this paper
we have adopted the valued constraint framework [1, 43], where the costs are
chosen from some totally ordered set. For our concrete classification results in
Sections 5, 6 and 7 we have fixed this set to be R+, the set of non-negative real
numbers together with infinity, combined using standard addition. One possible
direction in which to extend our results would be to investigate the complexity
of valued constraint languages with other valuation structures.
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Figure 2: The tractable classes identified in Section 6

Example 8.1 Consider the set of integers {0, 1, . . . ,M} for some fixed M ≥ 1.
We can define a valuation structure, ΩM , on this set by taking the standard
ordering, and defining the aggregation operation to be the addition-with-ceiling
operation +M , defined as follows:

∀a, b ∈ {0, 1, . . . , M} a +M b = min{a + b,M}
This valuation structure has been shown to be useful to express problems where
all solutions which violate M or more constraints are considered equally bad [35].

Changing the valuation structure can change the set of multimorphisms as-
sociated with a set of functions, as the next example indicates.

Example 8.2 Let Γ be a valued constraint language over a finite set D con-
taining all unary cost functions with range {0, 1}. For each d ∈ D, Γ contains
the unary cost function χd, defined as follows:

χd(x) =
{

1 if x = d
0 otherwise

Hence if F : Dk → Dk is a multimorphism of Γ, then

∀x1, . . . , xk ∈ D,

k⊕

i=1

χd(F (x1, . . . , xk)[i]) ≤
k⊕

i=1

χd(xi). (15)
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It was shown in Lemma 4.9 that every conservative function is a multimor-
phism of Γ. If the costs taken by the functions in Γ are defined to be elements of
R+, then the converse result also holds: every multimorphism of Γ is conserva-
tive. To see this, note that in this case Equation 15 implies that for each d ∈ D,
the k-tuple F (x1, . . . , xk) contains at most as many co-ordinate positions equal
to d as the tuple 〈x1, . . . , xk〉. Since this is true for each d ∈ D, it follows that
we have equality for each d ∈ D, which means that F is conservative.

However, if the costs are defined to be elements of the valuation structure
ΩM defined in Example 8.1 then this argument no longer holds when k > M .
For example, when M = 1, Γ is the language containing all crisp unary cost
functions, which has the multimorphism 〈Max, Max〉, which is not conservative.

Another possible extension of the results obtained here would be to allow
the costs to be chosen from a partially ordered set. This additional flexibility is
allowed by the semiring-based framework for soft constraints [1, 2]. This frame-
work also allows for other operations to be used in defining what constitutes the
preferred cost, rather than simply the minimum. Further investigation is needed
to determine whether the notion of a multimorphism can be used to characterise
interesting tractable constraint languages in this more general framework.

Other future developments to this work could include the study of approx-
imability properties for optimisation problems involving soft constraints over
arbitrary finite sets. This would build on and extend the detailed and success-
ful investigation of approximability properties which has already been completed
for Max-Sat and related problems in the Boolean case [10, 30].
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