
The Complexity of

Constraint Satisfaction Games and QCSP

Ferdinand Börner
Institut für Informatik
University of Potsdam

Potsdam, D-14482, Germany
fboerner@rz.uni-potsdam.de

Andrei Bulatov
School of Computing Science

Simon Fraser University
Burnaby BC, Canada V5A 1S6

abulatov@cs.sfu.ca

Hubie Chen
Department of Technology
University Pompeu Fabra
Barcelona 08003, Spain
hubie.chen@upf.edu

Peter Jeavons
Computing Laboratory
University of Oxford

Oxford, OX1 3QD, UK
peter.jeavons@comlab.ox.ac.uk

Andrei Krokhin∗

Department of Computer Science
Durham University

Durham, DH1 3LE, UK
andrei.krokhin@durham.ac.uk

Abstract

We study the complexity of two-person constraint satisfaction games. An instance of such a
game is given by a collection of constraints on overlapping sets of variables, and the two players
alternately make moves assigning values from a finite domain to the variables, in a specified
order. The first player tries to satisfy all constraints, while the other tries to break at least
one constraint; the goal is to decide whether the first player has a winning strategy. We show
that such games can be conveniently represented by a logical form of quantified constraint
satisfaction, where an instance is given by a first-order sentence in which quantifiers alternate
and the quantifier-free part is a conjunction of (positive) atomic formulas; the goal is to decide
whether the sentence is true.

While the problem of deciding such a game is PSPACE-complete in general, by restricting
the set of allowed constraint predicates, one can obtain infinite classes of constraint satisfaction
games of lower complexity. We use the quantified constraint satisfaction framework to study
how the complexity of deciding such a game depends on the parameter set of allowed predi-
cates. With every predicate, one can associate certain predicate-preserving operations, called
polymorphisms. We show that the complexity of our games is determined by the surjective poly-
morphisms of the constraint predicates. We illustrate how this result can be used by identifying
the complexity of a wide variety of constraint satisfaction games.

Keywords: constraint satisfaction, games, quantified constraint satisfaction problem, polymor-
phisms, complexity, algorithms.

∗Corresponding author

1

1 Introduction

The constraint satisfaction problem (CSP) provides a general framework in which a wide variety of
combinatorial search problems can be expressed in a natural way [19, 24]. An instance of the CSP
can be viewed as a collection of predicates on overlapping sets of variables; the aim is to determine
whether there exist values for all of the variables such that all of the specified predicates hold
simultaneously. Although the CSP, in its general formulation, is NP-complete and hence likely to
be intractable, it can be parameterized by restricting the set of allowed predicates which can be used
as constraints. The problem of classifying the complexity of the CSP (and its many variants) for
all possible parameter sets has attracted much attention, because constraint satisfaction problems
play an important role in many areas of computer science and artificial intelligence [24]. An
important outcome of research in this direction has been the design of sophisticated new polynomial-
time algorithms for solving a wide variety of problems (see, for example, [7, 22]). In addition,
classification results for the CSP are significant from a complexity-theoretic standpoint, as they
provide large subclasses of complexity classes that avoid intermediate complexity. For example, in
the case of the class NP, a number of dichotomy results have been obtained [6, 7, 19, 27].

The complexity of combinatorial games is also a major line of research (see [28, 29, 43, 51]). In
this paper we study the complexity of two-person constraint satisfaction games, in which, given a
CSP instance, two players (call them ∃ and ∀) alternately assign values to the variables in a specified
order. Player ∃ tries to satisfy all constraints, while player ∀ (the adversary) tries to break at least
one constraint; the goal is to decide whether player ∃ has a winning strategy. Note that the order
of variables is specified in every instance, since otherwise (if the players were allowed to choose the
variable ordering) the adversary would be able to break constraints too easily. The complexity of
some related games was studied in [2, 49]. A different kind of game has already been studied in
the context of constraint satisfaction [39] where it was used to prove tractability of certain CSPs.

The CSP can be expressed as the problem of deciding the truth of a given first-order sentence
consisting of a conjunction of predicates, where all of the variables are existentially quantified.
Hence the CSP generalises the standard propositional satisfiability problem, by allowing the possible
values for the variables to be chosen from an arbitrary finite set, and allowing the constraints
to be arbitrary predicates rather than just clauses. Satisfiability games of the form described
above can be conveniently cast as (and are equivalent to) quantified satisfiability problems, known
as QSAT. Similarly, games of this form on CSP instances are equivalent to quantified constraint
satisfaction problems (QCSP), in which universal quantifiers are allowed in the sentence, in addition
to existential quantifiers [19, 20]. The existentially quantified variables correspond to the moves of
∃, and the universally quantified ones to the moves of ∀; the (specified) order of moves corresponds
to the order of quantifiers in the formula. Note that if the quantifiers do not alternate in a formula
then the standard trick is to insert into the prefix appropriately quantified “dummy” variables that
do not appear in the quantifier-free part; obviously, this does not affect validity of the formula, and
the size of the formula increases by an at most constant factor.

The QCSP framework is actively studied in artificial intelligence, where it is used to model
problems, for example, in non-monotonic reasoning [25] and in planning [48]. One motivating
example for the study of the QCSP arises in the development of automated systems with certain
integrity constraints; such a system should be able to respond to any action of the user (who may
be thought of as an adversary) in such a way that the integrity constraints are satisfied. Checking
whether or not such a system is safe amounts to solving a QCSP. Several general (superpolynomial or
incomplete) algorithms for the Boolean QCSP (that is, QSAT) have been suggested [13, 32, 37, 53],
and recently researchers have begun to look for ways to solve non-Boolean QCSP problems [3, 31,
41, 53].

2

It is not hard to see that QCSP is PSPACE-complete in general. However, with certain
restrictions on the type of predicates allowed in instances, the constraint satisfaction game may be
easier to decide. Our ultimate goal is to determine how the complexity of deciding a constraint
satisfaction game depends on the parameter set (of predicates allowed in instances).

The Boolean QCSP and some of its restrictions, such as Quantified 3-SAT, have always been
standard examples of PSPACE-complete problems [30, 43, 50]. However, for some parameter
sets, Boolean QCSP has been shown to be tractable: for all binary predicates in [1], and for Horn
predicates in [37]. Indeed, a complete classification for the Boolean QCSP was obtained in [19, 20]
(see Theorem 3.8, below).

However, the general non-Boolean QCSP has not yet been systematically studied from the
viewpoint of complexity classification. This paper initiates a systematic approach to the complexity
classification of the QCSP over arbitrary finite domains. Between the announcement of (some of)
the results of this paper [4, 5, 15] and publication of this extended version, several further papers
following this line of research have appeared, e.g., [14, 16, 17, 18, 26, 42].

Obtaining complexity classifications for non-Boolean CSPs is significantly more difficult than
for Boolean CSPs: the direct combinatorial approach used in the Boolean case is infeasible, so
more involved techniques are required. A far-reaching approach for tackling this general case via
graph theory, logic and games has been developed in [21, 27, 38]. However, the most successful
approach to date has been the algebraic approach developed in [12, 34, 36] (see also [40]). This
approach has led to many new tractability and classification results for non-Boolean CSPs (see for
example, [8, 9, 10, 11, 21, 22, 40]) and, thus far, has culminated in a complete classification of
the complexity of CSPs for the three-valued case [6], and the case when all unary predicates are
available [7].

In this paper, we extend the algebraic framework that has been used to study the CSP, and
we show that certain algebraic objects (surjective polymorphisms) determine the complexity of the
QCSP for any given choice of parameter set. We then use this approach to identify several classes
of parameter sets yielding a tractable QCSP. The CSP for each of these classes is already known
to be tractable [36, 40], but establishing the tractability of the QCSP for these classes requires
considerable further effort. Moreover, we show that some surjective polymorphisms that are known
to guarantee the tractability of the CSP fail to do so for the QCSP. We also apply the results to
classify the complexity of a range of constraint satisfaction games.

The paper is organised as follows. In Section 2, we give the basic definitions, explain the
connection between the QCSP and constraint satisfaction games, and provide some examples. Then,
in Section 3.1, we outline the algebraic approach to the CSP and, in Section 3.2, we cite known
complexity results on the QCSP. An algebraic approach to the QCSP is developed in Section 3.3.
Then, in Sections 4.1 and 4.2, we prove the tractability of QCSPs corresponding to Mal’tsev and
near-unanimity polymorphisms. Section 5 is devoted to the main intractability result. In Section 6,
we show that certain semilattice polymorphisms guarantee tractability of the corresponding QCSPs,
while all other semilattice polymorphisms do not. Finally, in Section 7 we obtain a complete
classification for QCSPs in which the graphs of all the permutations of the values are available; the
result is a ‘trichotomy’, that is, every problem either belongs to PTIME, or is NP-complete, or is
PSPACE-complete.

2 Definitions and Examples

Throughout this paper, we use the standard correspondence between predicates and relations: a
relation consists of all tuples of values for which the corresponding predicate holds. We will use the

3

same symbol for a predicate and its corresponding relation, since the meaning will always be clear
from the context. We will use R

(m)
D to denote the set of all m-ary relations (or predicates) over a

set D, and RD to denote the set of all relations over a set D, that is, RD =
⋃∞

m=1 R
(m)
D .

The constraint satisfaction problem can be defined as follows.

Definition 2.1 An instance of the CSP on D is a formula ψ = ψ1 ∧ . . . ∧ ψq where each ψi is a
(positive) atomic formula involving a predicate from RD. The question is whether ψ is satisfiable.

An instance of the QCSP is a first-order sentence ∃v1∀v2 . . .Qlvl ψ, where ψ is an instance of
the CSP whose variables are chosen from v1, . . . , vl and the quantifiers alternate; the question is
whether the sentence is true.

The predicates appearing in an instance will be referred to as constraints, since each of them
restricts the possible models for ψ in some way.

As explained in the introduction, the version of the QCSP where the quantifiers are not required
to alternate is the same from a complexity point of view, since the alternation can always be achieved
by using dummy variables. This more general version will often be used in our technical results.
Note that by using dummy variables we can also change whether the first (and/or last) quantifier
is existential or universal.

Note that the CSP decision problem is the particular case of the QCSP problem where all of
the universally quantified variables are dummy variables.

Since the QCSP is our model for constraint satisfaction games, we will also use the following
game-theoretic characterization of QCSP instances.

Definition 2.2 Let φ = ∀y1∃x1 . . .∀yn∃xn ψ be a QCSP instance over a domain D. A strategy
for ∃ in φ is a sequence of mappings {τi : Di → D}i=1,...,n; it is said to be a winning strategy if, for
any mapping σ : {y1, . . . , yn} → D defined on the universally quantified variables of φ, the formula
ψ is true under the mapping taking each yi to σ(yi) and each xi to τi(σ(y1), . . . , σ(yi)).

The following proposition is straightforward.

Proposition 2.3 A QCSP instance φ is true if and only if ∃ has a winning strategy in φ.

It is well-known that the QCSP and CSP decision problems, in the general formulations given
above, are PSPACE-complete and NP-complete, respectively. The broad research problem we
focus on in this paper is to classify the complexity of the following parameterized version of the
QCSP, for all possible parameterizations.

Definition 2.4 Let Γ ⊆ RD. The decision problems CSP(Γ) and QCSP(Γ) are restrictions of CSP
and QCSP, respectively, to instances in which all predicates belong to Γ.

We will now describe several combinatorial games that can be cast as QCSP(Γ) for a suitable
set Γ.

Example 2.5 [Not-All-Equal 2-Colouring Game] An instance of this game is given by a
linearly ordered set A and a collection C of (at most) three-element subsets of A. The players
colour, in turn, elements of A with two colours, black and white, according to the ordering of A.
Player ∃ wins if and only if, after all elements in A are coloured, each set in C has elements of both
colours.

This game exactly corresponds to the problem QCSP({%nae}) where %nae is the ternary relation
on {0, 1} defined by %nae = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. 2

4

Example 2.6 [One-In-Three 2-Colouring Game] An instance of this game is the same as in
the preceding example. Player ∃ wins if and only if, after all elements in A are coloured, each set
in C has exactly one black element.

This game exactly corresponds to the problem QCSP({%1in3}) where %1in3 is the ternary relation
on {0, 1} defined by %1in3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. 2

Example 2.7 [Graph k-Colouring Game] In this game, an instance is a graph whose vertices
are linearly ordered. In each move, a player colours one of the vertices in one of k colours. The
order of moves is specified by the ordering on the vertices. Player ∃ wins if and only if, after all
vertices are coloured, no adjacent vertices are of the same colour.

This game precisely corresponds to QCSP({6=k}) where 6=k is the disequality predicate on a set
D such that |D| = k. To see this, consider the vertices of an input graph as variables, then the
constraints are of the form 6=k (x, y) where (x, y) runs through the set of edges of the graph. 2

Note that the game described in Example 2.7 is different from the graph colouring games of
Bodlaender [2], where both players must satisfy all constraints by their moves, and the loser is the
one who cannot make a move.

Example 2.8 [One-Or-Both Colour Matching Game] In this game an instance is a directed
graph G whose nodes are linearly ordered, together with a set D (of colours). In addition, every arc
(x, y) of G has a label which is a (suggested) pair a, b of colours from D for x and y, respectively. In
each move, a player colours one of the nodes of G with some colour from D. The order of moves is
specified by the ordering on the vertices. Player ∃ wins if and only if, after all vertices are coloured,
the suggested pair of colours on every arc (x, y) matches at least one of the actual colours given to
x, y.

This game precisely corresponds to QCSP(Γcm) where Γcm ⊆ RD consists of all binary relations
of the form %a,b = {(u, v) | u = a ∨ v = b}, for a, b ∈ D. 2

Example 2.9 [Colour Implication Game] In this game an instance is a directed graph G whose
nodes are linearly ordered, together with a set D (of colours) containing two distinguished colours,
black and white. In addition, every arc (x, y) of G has a label which is a (suggested) pair a, b of
non-distinguished colours from D for x and y, respectively. In each move, a player assigns a colour
cx to a vertex x of G. The order of moves is specified by the ordering on the vertices. Player ∃ wins
if and only if, after all nodes are coloured, every arc e = (x, y) satisfies the following condition: if
cx is black or matches its suggested colour, then cy is also black or matches its suggested colour.

This game precisely corresponds to QCSP(Γci) where Γci ⊆ RD consists of all binary relations
of the form %a,b = {(u, v) | u ∈ {a,black} ⇒ v ∈ {b, black}}, for a, b ∈ D \ {black, white}. 2

Example 2.10 [Linear Equations Game] In this game an instance consists of a system of linear
equations over a finite field K where the variables in the system are linearly ordered. The players
alternately assign elements of K to the variables in the specified order. Player ∃ wins if and only
if the obtained assignment is a solution to the system.

This game precisely corresponds to QCSP(Γlin) where Γlin ⊆ RK consists of all relations ex-
pressible by a linear equation over K. 2

The results obtained in this paper will be sufficient to determine the complexity of deciding
each of the six games described in Examples 2.5 to 2.10 (see Corollaries 3.9 and 8.1).

Finally, we observe that problems of the form CSP(Γ) with finite Γ can be expressed as ho-
momorphism problems (see, for example, [27, 34]): in this formulation the question is to decide

5

whether a given relational structure admits a homomorphism to a fixed relational structure. Hence
all constraint satisfaction games can be viewed as particular examples of the following very general
game.

Example 2.11 [Homomorphism Construction Game] Fix an arbitrary relational structure
B = (D; %B1 , . . . , %Bk) where %Bi ∈ RD for all i. An instance of the game is another relational
structure A = (V ; %A1 , . . . , %Ak) such that the set V is linearly ordered and, for all 1 ≤ i ≤ k,
%Ai ∈ RV and the relations %Bi and %Ai are of the same arity.

The players construct a mapping h : V → D by choosing, in turn and according to the order
on V , images for elements of V . Player ∃ wins if and only if h is a homomorphism from A to B,
that is, for all 1 ≤ i ≤ k, h(~x) ∈ %Bi whenever ~x ∈ %Ai .

This game precisely corresponds to QCSP(Γ) where Γ = {%B1 , . . . , %Bk }. To see this, think of
elements of V as variables, and, for every i and for every tuple ~x ∈ %Ai , introduce a constraint
%Bi (~x). As always, the order of moves corresponds to the order of quantifiers. 2

3 Classifying Complexity

3.1 An algebraic approach

In earlier papers [12, 34, 36], an algebraic approach to studying the complexity of constraint satis-
faction problems CSP(Γ) was developed (see also survey [40]). This approach is briefly reviewed in
this subsection. We will use O

(n)
D to denote the set of all n-ary operations on a set D (that is, the

set of mappings f : Dn → D), and OD to denote the set
⋃∞

n=1 O
(n)
D . Any operation on D can be ex-

tended in a standard way to an operation on tuples over D, as follows. For any operation f ∈ O
(n)
D ,

and any collection of m-tuples ~a1,~a2, . . . ,~an ∈ Dm, where ~ai = (~ai(1), . . . ,~ai(m)) (for i = 1, . . . , n),
define f(~a1, . . . ,~an) to be the m-tuple (f(~a1(1), . . . ,~an(1)), . . . , f(~a1(m), . . . ,~an(m))).

Definition 3.1 For any relation % ∈ R
(m)
D , and any operation f ∈ O

(n)
D , if f(~a1, . . . ,~an) ∈ % for all

choices of ~a1, . . . ,~an ∈ %, then % is said to be invariant under f , and f is called a polymorphism of
%.

The set of all relations that are invariant under each operation from some set C ⊆ OD will be
denoted Inv(C). The set of all operations that are polymorphisms of every relation from some set
Γ ⊆ RD will be denoted Pol(Γ).

The following result provides a link between polymorphisms and the complexity of a CSP.

Theorem 3.2 ([34]) Let Γ1 and Γ2 be sets of predicates over a finite set, such that Γ1 is finite.
If Pol(Γ2) ⊆ Pol(Γ1) then CSP(Γ1) is logarithmic-space reducible to CSP(Γ2).

This result shows that, when the set of values is finite, finite sets of predicates with the same
polymorphisms give rise to constraint satisfaction problems which are mutually reducible to one
another. In other words, the complexity of CSP(Γ) is determined by the polymorphisms of Γ. Note
that Theorem 3.2 was originally stated in [34] with polynomial-time reducibility, but, by using the
result of [47], can easily be strengthened to logarithmic-space reduction.

The proof of Theorem 3.2 is made up of three crucial ingredients. The first is the fact that Inv(·)
and Pol(·) form a Galois correspondence between RD and OD (see Proposition 1.1.14 of [45]). A
basic introduction to this correspondence can be found in [44], and a comprehensive study in [45].

6

Proposition 3.3 Let D be a finite set, Γ, Γ′ ⊆ RD, C, C ′ ⊆ OD. Then

Γ ⊆ Γ′ =⇒ Pol(Γ) ⊇ Pol(Γ′) C ⊆ C ′ =⇒ Inv(C) ⊇ Inv(C ′)
Γ ⊆ Inv(Pol(Γ)) C ⊆ Pol(Inv(C))
Pol(Γ) = Pol(Inv(Pol(Γ))) Inv(C) = Inv(Pol(Inv(C)))

The second ingredient involves the set of predicates 〈Γ〉 defined below (see [34] for more infor-
mation).

Definition 3.4 For any set Γ ⊆ RD the set 〈Γ〉 consists of all predicates that can be expressed
using

1. predicates from Γ, together with the binary equality predicate =D on D,

2. conjunction,

3. existential quantification.

As the next proposition shows, the complexity of CSP(Γ) is, in effect, determined by 〈Γ〉; in
particular, the problems CSP(Γ1) and CSP(Γ2) are of the same complexity if 〈Γ1〉 = 〈Γ2〉.
Proposition 3.5 ([34, 12]) Let Γ1 and Γ2 be sets of predicates over a finite set, such that Γ1 is
finite. If 〈Γ1〉 ⊆ 〈Γ2〉, then CSP(Γ1) is logarithmic-space reducible to CSP(Γ2).

As with Theorem 3.2, this proposition was originally stated with polynomial-time reducibility,
but it can be changed to logarithmic-space reducibility by using results of [47].

Finally, the third ingredient in the proof of Theorem 3.2 is the observation that the set 〈Γ〉 has
an alternative characterization, which allows us to jump back to the polymorphisms of Γ.

Proposition 3.6 ([45]) For any set of predicates Γ over a finite set, 〈Γ〉 = Inv(Pol(Γ)).

In Section 3.3 below, we will show that each of these three ingredients has an analog in the
analysis of the QCSP.

3.2 Known classification results

A number of results on the complexity of constraint satisfaction problems have been obtained via
the viewpoint of polymorphisms (see survey [40]). Indeed, we can re-state the classic dichotomy
theorem of Schaefer [50] using the notion of polymorphism.

Theorem 3.7 ([50]) For any Γ ⊆ R{0,1}, CSP(Γ) is in PTIME when Pol(Γ) contains one of the
following:

• the constant 0 or constant 1 operations,

• the conjunction (∧) or disjunction (∨) operations,

• the affine operation x− y + z (mod 2),

• the majority operation (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).

In all other cases, CSP(Γ) is NP-complete.

This reformulation of Schaefer’s theorem can be demonstrated to follow from Theorem 3.2 and
well-known algebraic results of Post [46]; see [34].

The complexity of QCSP(Γ) has also been completely classified in the Boolean case, giving an
analog of Theorem 3.7 for quantified constraints.

7

Theorem 3.8 ([19, 20]) For any Γ ⊆ R{0,1}, QCSP(Γ) is in PTIME when Pol(Γ) contains one
of the following:

• the conjunction (∧) or disjunction (∨) operations,

• the affine operation x− y + z (mod 2),

• the majority operation (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).

In all other cases, QCSP(Γ) is PSPACE-complete.

Using this theorem, it is not difficult to determine the complexity of the games described in Exam-
ples 2.5-2.10 in the special case of a two-valued domain.

Corollary 3.9 In the special case when D = {0, 1}:
(1) The games Not-All-Equal 2-Colouring and One-In-Three 2-Colouring are

PSPACE-complete.

(2) The games Graph 2-Colouring, One-Or-Both Colour Matching, Colour Implica-
tion and Linear Equations can be decided in polynomial time.

Proof: It is easy to verify that if Γ is {%nae} or {%1in3} then none of the four operations from
Theorem 3.8 is a polymorphism of Γ. By Theorem 3.8, this proves part (1).

It is also straightforward to check that the majority operation is a polymorphism of every binary
predicate on {0, 1}. Hence, by Theorem 3.8, the first three games listed in part (2) are polynomial-
time decidable, since these games correspond to QCSPs with binary predicates. (Note that in the
Colour Implication game we interpret black as 1 and white as 0). Finally, the affine operation
is a polymorphism of any Boolean predicate given by a linear equation over GF(2), which shows
that the fourth game listed in part (2) can also be decided in polynomial time.

Theorem 3.8 was originally proved using combinatorial methods which do not easily generalize
to larger sets of values. However, this theorem is most concisely stated using polymorphisms. In
the next section we will show that, as with the complexity of CSP(Γ), for all finite sets of values
the complexity of QCSP(Γ) depends only on the polymorphisms of Γ. In particular, we will show
that a suitably modified version of Theorem 3.2 holds with QCSP(Γ) in place of CSP(Γ) (see
Theorem 3.16). Thus, the algebraic approach of using polymorphisms to study complexity can also
be applied to quantified constraints.

3.3 Surjective polymorphisms and the QCSP

As we noted in Section 3.1, the successful use of the algebraic approach to the CSP is possible due
to three statements: Proposition 3.3, Proposition 3.5 and Proposition 3.6.

We now establish that in the case of the QCSP three similar properties hold for surjective poly-
morphisms. We thereby introduce a new Galois connection that involves surjective polymorphisms
in place of arbitrary polymorphisms. We show that surjective polymorphisms play a similar role
in the analysis of the QCSP to that played by arbitrary polymorphisms for the ordinary CSP (cf.
Theorem 3.2). Let s-Pol(Γ) denote the set of all surjective operations contained in Pol(Γ). First, it
is not hard to verify that the operators Inv(·) and s-Pol(·) form a Galois correspondence.

8

Proposition 3.10 Let Γ, Γ′ be sets of predicates on a finite set A and let C, C ′ be sets of surjective
operations on A. Then

Γ ⊆ Γ′ =⇒ s-Pol(Γ) ⊇ s-Pol(Γ′) C ⊆ C ′ =⇒ Inv(C) ⊇ Inv(C ′)
Γ ⊆ Inv(s-Pol(Γ)) C ⊆ s-Pol(Inv(C))
s-Pol(Γ) = s-Pol(Inv(s-Pol(Γ))) Inv(C) = Inv(s-Pol(Inv(C)))

Next, we show that the complexity of QCSP(Γ) depends only on the set of predicates [Γ], defined
as follows.

Definition 3.11 For any set Γ ⊆ RD, the set [Γ] consists of all predicates that can be expressed
using

1. predicates from Γ, together with the binary equality predicate =D on D,

2. conjunction,

3. existential quantification,

4. universal quantification.

We have the following parallel to Proposition 3.5.

Proposition 3.12 Let Γ1 and Γ2 be sets of predicates over a finite set, such that Γ1 is finite. If
[Γ1] ⊆ [Γ2], then QCSP(Γ1) is logarithmic-space reducible to QCSP(Γ2).

Proof: Let D be a finite set, and let Γ1, Γ2 ⊆ RD. By Definition 3.11, for any n-ary relation % in
[Γ1], the predicate %(x1, . . . , xn) is equivalent to a formula Φ% of the form Q1y1 . . .QmymC, where
the Qi, 1 ≤ i ≤ m are quantifiers, and C is a conjunction of (positive) atomic formulas involving
only predicates from Γ2 ∪ {=D} and variables x1, . . . , xn, y1, . . . , ym.

Let sentence P0 be an instance of QCSP(Γ1). Replace each predicate % in P0 by the corre-
sponding formula Φ%, to obtain an equivalent formula P1. Since Γ1 is finite, this can be done in
logarithmic space. Transform P1 into prenex normal form by moving all quantifiers (in order) to
the front of the formula (renaming variables as needed to avoid name clashes). This transforma-
tion can also be carried out in logarithmic space. The resulting sentence, P2, is an instance of
QCSP(Γ2 ∪ {=D}), and P2 is clearly equivalent to P0.

It now only remains to remove any occurrences of the equality relation from P2. We shall
assume that |D| ≥ 2 (the case |D| = 1 is trivial). Consider the graph G = (V,E) whose vertices
are the variables appearing in P2 and

E = {(x, y) ∈ V 2 | (x = y) is a subformula in P2}.
For each connected component K, order the variables by the order in which they are quantified in
P2. If K contains two variables, x and y, such that x is before y in this ordering and y is universally
quantified, then P2 (and hence P0) is obviously false. Note that, by the result of [47], the existence
of a path between two given vertices in an undirected graph can be decided in logarithmic space.
In the remaining cases, all of the variables in K after the first must be existentially quantified,
and because of the equality constraints they must all take the same value as the first variable.
Hence, they can all be replaced with the first variable, removing the corresponding quantifiers,
and removing the equality constraints. This can also be achieved in logarithmic space because we
only need to check the existence of paths in G when transforming P2 as described above. After
this procedure, we obtain a sentence P3 that is equivalent to P0 and is an instance of QCSP(Γ2).
Moreover, the whole transformation can be carried out in logarithmic space.

The next example shows that Proposition 3.12 is stronger than Proposition 3.5 (reformulated
for the QCSP in place of the CSP), as [Γ] may be strictly larger than 〈Γ〉.

9

Example 3.13 Let % be the relation {0, 1}4 \ {(0, 0, 0, 1), (1, 1, 1, 0)}, and let %nae be the relation
{0, 1}3 \ {(0, 0, 0), (1, 1, 1)} (as in Example 2.5). By “universally quantifying away” the last co-
ordinate of %, we obtain %nae ∈ [{%}]. On the other hand, because the constant 0 and constant
1 operations are both polymorphisms of %, every relation in 〈{%}〉 contains both the “all-zeroes”
tuple (0, . . . , 0) and the “all-ones” tuple (1, . . . , 1) by Theorem 3.6. It follows immediately that
%nae /∈ 〈{%}〉. Setting Γ1 = {%nae} and Γ2 = {%}, we observe that Γ1 6⊆ 〈Γ2〉, and Γ1 ⊆ [Γ2],
giving examples of predicate sets Γ1, Γ2 such that the hypothesis of Proposition 3.12 holds, but the
hypothesis of Proposition 3.5 does not. (Note that Γ1 ⊆ 〈Γ2〉 if and only if 〈Γ1〉 ⊆ 〈Γ2〉; likewise,
Γ1 ⊆ [Γ2] if and only if [Γ1] ⊆ [Γ2].) 2

In fact, we can use Proposition 3.12 to exhibit an example of a predicate giving rise to trivial CSPs,
but also giving rise to intractable QCSPs.

Example 3.14 Let the relations % and %nae be defined as in Example 3.13. Since %nae ∈ [{%}],
Proposition 3.12 implies that QCSP({%nae}) reduces to QCSP({%}), so by Corollary 3.9, QCSP({%})
is PSPACE-complete. On the other hand, CSP({%}) is trivial, as any instance is satisfiable by
the “all-zeroes” or “all-ones” assignment. 2

Proposition 3.12 demonstrates the importance of the set [Γ] with respect to the complexity of
QCSP(Γ). By analogy to Theorem 3.6, [Γ] can also be characterized in terms of polymorphisms.

Proposition 3.15 For any set of predicates Γ over a finite set, [Γ] = Inv(s-Pol(Γ)).

Proof: Let D be a finite set, and let Γ ⊆ RD. The equality relation, =D, is invariant under
every operation on D, so Γ ∪ {=D} ⊆ Inv(s-Pol(Γ)). Let f be a surjective operation on D. It is
straightforward to verify that applying conjunction or any quantification to predicates invariant
under f gives another predicate which is also invariant under f . Hence, [Γ] ⊆ Inv(s-Pol(Γ)).
Moreover, it follows that s-Pol(Γ) = s-Pol([Γ]).

To establish that [Γ] ⊇ Inv(s-Pol(Γ)), we will show that for any m-ary relation % ∈ Inv(s-Pol(Γ)),
the relation σ is a member of [Γ], where σ is defined by

σ = {(a1, a2, . . . , am, d1, d2, . . . , d|D|) | (a1, . . . , am) ∈ %, (d1, . . . , d|D|) ∈ D|D|}.
From this it follows that % ∈ [Γ], by existentially quantifying over the last |D| variables in σ.

To show that σ ∈ [Γ], we first define σ′ =
⋂{γ ∈ [Γ] | σ ⊆ γ}. (Note that the intersection

is finite.) Since [Γ] contains the total relation Dm+|D|, and is closed under conjunction, σ′ is a
member of [Γ] and σ ⊆ σ′. In fact, σ′ is the minimal relation of arity m + |D| in [Γ] with this
property (when ordered by inclusion).

Now choose any tuple ~c = (b1, . . . , bm, d1, d2, d3, . . . , d|D|) ∈ σ′. Note that σ′ must also contain
all tuples of the form (b1, . . . , bm, d′1, d

′
2, d

′
3, . . . , d

′
|D|), for each possible choice of d′1, d

′
2, d

′
3, . . . , d

′
|D|,

since otherwise we could obtain a smaller relation σ′′ containing σ, by applying a sequence of
universal quantifications, followed by a conjunction with the total relation Dm+|D|. Hence we may
choose ~c so that the values of the di are all distinct, that is, {d1, d2, . . . , d|D|} = D.

By Definition 3.11, [Γ] is closed under conjunction and existential quantification, and contains
the equality relation, =D. It is well-known (see Theorems 1.2.3 and 2.1.3 in [45]), that such sets
satisfy the condition [Γ] = Inv(Pol([Γ])). Furthermore, it is well-known (see Proposition 1.1.19 of
[45]) and straightforward to verify that

σ′ = {f(~a1, . . . ,~an) | n ≥ 1, ~a1, . . . ,~an ∈ σ, f ∈ Pol([Γ])}.
Therefore, there exist n ≥ 1, ~a1, . . . ,~an ∈ σ and an n-ary function f ∈ Pol([Γ]) such that ~c =
f(~a1, . . . ,~an).

10

By the choice of ~c, the function f must be surjective. Therefore f is in s-Pol([Γ]), and so
f ∈ s-Pol(Γ), by the observation above. By the choice of %, this implies that % is invariant under
f , and so (b1, . . . , bm) ∈ %. It follows that σ′ = σ, so σ ∈ [Γ], as required.

We can now conclude that the complexity of QCSP(Γ) depends only on s-Pol(Γ), the surjective
polymorphisms of Γ. The following theorem follows immediately from Propositions 3.10, 3.12
and 3.15.

Theorem 3.16 Let Γ1 and Γ2 be sets of predicates over a finite set, such that Γ1 is finite. If
s-Pol(Γ2) ⊆ s-Pol(Γ1), then QCSP(Γ1) is logarithmic-space reducible to QCSP(Γ2).

This theorem offers a dual perspective on the phenomenon displayed by Example 3.14, whereby
a predicate set Γ can simultaneously give rise to a trivial CSP and give rise to an intractable
QCSP. What is occurring is that the operations in Pol(Γ) that guarantee tractability of CSP(Γ)
are non-surjective, and hence are not present in s-Pol(Γ).

4 Tractability

Comparing the statements of Theorems 3.7 and 3.8, we observe that, in two-valued domains,
surjective polymorphisms which ensure the tractability of the CSP also ensure the tractability of
the QCSP. However, it certainly cannot be taken for granted that a similar statement holds for
non-Boolean domains. In this section, we show that it does hold for two broad classes of surjective
polymorphisms.

4.1 Mal’tsev operations

An operation m(x, y, z) on D is said to be Mal’tsev if it satisfies the identities m(x, y, y) =
m(y, y, x) = x for all x, y. For example, for an Abelian group G, the operation f(x, y, z) = x−y+z,
called the affine operation of G, is a Mal’tsev operation. Relations invariant under the affine oper-
ation of a finite Abelian group play a significant role in the study of the complexity of the standard
constraint satisfaction problem [27, 34, 36].

Let Γ = Inv({m}), where m is some fixed Mal’tsev operation. A polynomial-time algorithm
for solving CSP(Γ) was given in [10]. Moreover, this algorithm also finds a satisfying assignment
for any satisfiable instance of CSP(Γ). We will show now that QCSP(Γ) can also be solved in
polynomial time by making repeated use of this algorithm.

Lemma 4.1 Let m be a Mal’tsev operation on a finite set D, let P = Q1x1 . . .Qnxn ψ(x1, . . . , xn)
be an instance of QCSP(Inv({m})), and let j be the maximal index such that Qj is the universal
quantifier.

(1) If ψ′(x1, . . . , xj−1) = ∀xj∃xj+1 . . .∃xn ψ(x1, . . . , xn) is satisfiable then, for any model (c1, . . . , cn)
of ψ, the tuple (c1, . . . , cj−1) is a model of ψ′.

(2) P is true if and only if P ′ = P1 ∧ P2 is true, where

P1 = Q1x1 . . .Qj−1xj−1∃xj∃xj+1 . . .∃xn ψ(x1, . . . , xn),
P2 = ∃x1 . . . ∃xj−1∀xj∃xj+1 . . .∃xn ψ(x1, . . . , xn).

11

Proof: (1) Let (a1, . . . , aj−1) be a model for ψ′, and for each b ∈ D, let (ab
j , . . . , a

b
n) be an extension

such that ~ab = (a1, . . . , aj−1, a
b
j , . . . , a

b
n) is a model for ψ and ab

j = b.
Take an arbitrary model ~c = (c1, . . . , cj−1, cj , . . . , cn) of ψ. We need to show that (c1, . . . , cj−1)

is a model of ψ′. Fix an arbitrary b ∈ D and let ~d = (d1, . . . , dn) be equal to m(~ab,~acj ,~c).
Proposition 3.15 implies that the predicate defined by ψ is invariant under m, so ~d is a model of
ψ, too. Moreover, we have di = m(ai, ai, ci) = ci for i ∈ {1, . . . , j − 1} and dj = m(ab

j , a
cj

j , cj) =
m(b, cj , cj) = b. Thus, (c1, . . . , cj−1) is a model of ψ′.

(2) Obviously, if P is true then P ′ is also true. The inverse implication easily follows from part
(1). Indeed, since P2 is true, we can apply (1); then, (1) implies that every tuple (c1, . . . , cj−1) that
can be extended to a model of ψ can be extended so with cj being any given element. Thus, since
P1 is true, so is P.

Theorem 4.2 Let m be an arbitrary Mal’tsev operation on a finite set D. The problem class
QCSP(Inv({m})) is in PTIME.

Proof: Let P = Q1x1 . . .Qnxn ψ(x1, . . . , xn) be an instance of the problem class QCSP(Inv({m})).
By repeatedly applying Lemma 4.1(2), one can show that P can be decomposed into a conjunction of
instances which have the same quantifier-free part and each contain at most one universal quantifier.
Moreover, if we can find a model of ψ then Lemma 4.1(1) implies that initial segments of this
model can be used in deciding whether each of the instances is true. It remains to notice that, as is
easy to check, fixing a value for any variable in a predicate from Inv({m}) gives another predicate
invariant under m, which implies that ∃xl+1 . . .∃xnψ(c1, . . . , cl−1, b, xl+1, . . . , xn) is also an instance
of CSP(Inv({m})). Now it follows that the algorithm shown in Figure 1 is correct.

Input P = Q1x1 . . .Qnxn ψ(x1, . . . , xn) where ψ = %1 ∧ . . . ∧ %q, and %1, . . . , %q ∈ Γ.
Output ‘YES’ if P is true, ‘NO’ otherwise.

Step 1 solve the instance ∃x1 . . .∃xn ψ
Step 2 if ψ has a model then find one, (c1, . . . , cn)

else output(‘NO’) and stop
Step 3 for l = n, . . . , 1 do
Step 3.1 if Ql is the universal quantifier then
Step 3.2 for each b ∈ D do
Step 3.2.1 solve the instance ∃xl+1 . . .∃xnψ(c1, . . . , cl−1, b, xl+1, . . . , xn)
Step 3.2.2 If this instance has no solution then output(‘NO’)

and stop
enddo

enddo
Step 4 output(‘YES’)

Figure 1: Algorithm for deciding QCSP(Γ) when Γ has a Mal’tsev polymorphism

This algorithm uses k|D|+ 1 applications of an algorithm for solving CSP(Inv({m})), where k
is the number of universal quantifiers in an instance, and one application of an algorithm finding a
model. Now we can use the polynomial-time algorithm for CSP(Inv({m})) developed in [10]. This
completes the proof of Theorem 4.2.

12

Note that if the operation m has a special form then the method described above can be used
to derive more specialised, and more efficient, algorithms. For example, let G be a finite Abelian
group, with affine operation f , and unit element 0, and let Γ be a finite set of relations over G
which are invariant under f . Note that, by straightforward algebraic manipulation, it can be shown
that any (n-ary) relation invariant under f is a coset of a subgroup of the group Gn.

In the simplest case, when the order of G is prime, G can be considered as a prime field, and
hence Gn can be considered as a vector space over G. In this case, each coset of a subgroup of
Gn is a linear variety, and it is well-known that such varieties can be defined by systems of linear
equations, whose coefficients are elements of the field G. Therefore, in this case, QCSP(Γ) can
be considered as the problem of solving quantified linear systems over G, which can be done by
applying standard techniques from linear algebra, or by using them in the above algorithm.

In the case when G is an arbitrary Abelian group, QCSP(Γ) requires a similar but slightly more
involved algorithm, see [5].

4.2 Near-unanimity operations

Our second example of surjective polymorphisms which give rise to tractable quantified constraint
satisfaction problems concerns operations known as near-unanimity operations. An operation f :
Dk → D is said to be near-unanimity if k ≥ 3 and f returns the value a whenever at least k − 1
of its arguments are equal to a; that is, for all a, b ∈ D, it holds that a = f(b, a, a, . . . , a, a, a) =
f(a, b, a, . . . , a, a, a) = . . . = f(a, a, a, . . . , a, b, a) = f(a, a, a, . . . , a, a, b).

Before giving the tractability result for the QCSP associated with such polymorphisms, we
introduce some notions of consistency.

Definition 4.3 ([35]) Let ψ be an instance of the CSP with variable set V = {x1, . . . , xn}. For a
subset V ′ of V , a mapping g′ : V ′ → D is a partial solution to ψ if, for every atomic formula %(~v)
from ψ, there is an extension g : V → D of g′ satisfying %(~v). For any j ≥ 2, the formula ψ is said
to be j-consistent if, for every subset V ′ of V with |V ′| = j − 1 and for every variable v ∈ V \ V ′,
any partial solution g′ : V ′ → D of ψ can be extended to a partial solution g′ : V ′ ∪ {v} → D of ψ.
The instance ψ is strongly k-consistent if it is j-consistent for j = 2, . . . , k. The formula ψ is said
to be globally consistent if it is strongly |V |-consistent.

The following theorem shows that when a constraint language is invariant under a near-
unanimity operation, ensuring a sufficiently high (but constant) degree of “local” consistency implies
global consistency.

Theorem 4.4 ([35]) Let f be an arbitrary near-unanimity operation of arity r on a finite set D.
Any instance of CSP(Inv({f})) which is strongly r-consistent is globally consistent.

Theorem 4.4 implies that invariance under a near-unanimity operation implies CSP tractability,
as any CSP instance ψ can be transformed into one that is strongly r-consistent in polynomial time,
as follows. For each subset of variables U = {u1, . . . , us}, with 2 ≤ s ≤ r, compute the relation
%U = {(g(u1), . . . , g(us)) | g : U → D is a partial solution to ψ}. Then for each subset of U
containing s− 1 variables, add a constraint whose relation allows precisely those assignments that
can be extended to some element of %U . Note that these new constraints can be obtained from
the original constraints (and the complete relation) by conjunction and existential quantification.
Since r is a constant, the new constraints can be obtained in polynomial time, and it can be
straightforwardly checked that the obtained CSP instance is strongly r-consistent and has the
same set of satisfying assignments as ψ.

13

We now prove that invariance under a near-unanimity operation implies tractability for QCSP
as well.

Theorem 4.5 Let f be an arbitrary near-unanimity operation on a finite set D. The problem class
QCSP(Inv({f})) is in PTIME.

Proof: Let f be a near-unanimity operation of arity r, and let P = Q1x1 . . .Qnxnψ be an instance
of the QCSP(Inv({f})) problem. We show that a new instance P ′ of the QCSP(Inv({f})) problem
can be computed in polynomial time, where P ′ has one fewer quantifier than P. Moreover, the
instance P ′ will have the property that it is valid if and only if P is valid. This suffices to establish
that QCSP(Γ) is in PTIME, since the procedure can be iteratively applied to decide the validity
of an instance of QCSP(Γ).

The new formula P ′ is obtained from P by elimination of the innermost quantifier and associated
quantified variable, Qnxn. We split into two cases depending on the type of Qn.

Case Qn = ∃: Obtain ψ0 from ψ by establishing strong r-consistency; this can be done in
polynomial time, as described above. As the procedure for establishing strong r-consistency involves
adding predicates that can be obtained from the original predicates by using conjunction and
existential quantification, all predicates in ψ0 are invariant under f . We next create a formula
ψ′ by including in it every constraint from ψ0, but “projecting out” the variable xn from any
constraints where it is present. More precisely, we create ψ′ as follows: for every constraint %0(~v0)
in ψ0, if ~v0 does not contain xn, then include the constraint %0(~v0) in ψ′; otherwise, include in ψ′

the atomic formula equivalent to ∃xn%0(~v0).
By Theorem 4.4, any satisfying assignment for ψ′ can be extended to a satisfying assignment

for ψ0. Moreover, any satisfying assignment for ψ0 is straightforwardly verified to be a satisfying
assignment for ψ′, from the definition of ψ′. We therefore have that ψ′ = ∃xnψ0, and may define
P ′ to be Q1x1 . . .Qn−1xn−1ψ

′.
Case Qn = ∀: Create a formula ψ′ from the formula ψ as follows: replace each constraint %(~v)

in ψ by the atomic formula equivalent to ∀xn%(~v). Since f is surjective, every predicate in the new
formula is invariant under f . We may therefore define P ′ = Q1x1 . . .Qn−1xn−1ψ

′.

Note that Theorem 4.5 can be strengthened for a special ternary near-unanimity operation
known as the dual discriminator, which is the operation d such that d(x, y, z) = y if y = z and
d(x, y, z) = x otherwise. It was shown in [5] that QCSP(Inv({d})) belongs to complexity class NL.

5 Intractability

In this section we will use Theorem 3.16 to give a sufficient condition, in terms of surjective poly-
morphisms, for PSPACE-completeness of QCSP(Γ). We first establish that a particular QCSP
problem is PSPACE-complete. This problem corresponds to a generalized form of the standard
graph-|D|-colorability problem [30, 43] (see Example 2.7).

Proposition 5.1 QCSP({6=D}) is PSPACE-complete when |D| ≥ 3.

Proof: We prove this by reduction from QCSP({%nae}), where %nae is the ternary not-all-equal
predicate on a 2-element set, as defined in Example 2.5. Let P be an instance of QCSP({%nae}),
with variables v1, v2, . . . , vn. We construct a corresponding instance P ′ of QCSP({6=D}) as follows.

First construct a graph, GP , as shown in Fig. 2, with 3 nodes for each variable vi of P (labelled
xi, yi and zi), 3 nodes for each triple of variables constrained by %nae in P, and one additional node

14

(labelled w). Connect these nodes as indicated in Fig. 2, so that each zi is connected to yi, each
yi is connected to xi and w, and each xi is connected to w. For each triple of nodes representing
a constraint on vi1 , vi2 , vi3 , connect these nodes to form a triangle and also add edges from these
nodes to the corresponding nodes xi1 , xi2 , xi3 .

The standard |D|-colouring problem for the graph GP can be represented as the satisfiability
problem for the formula built as follows: introduce a variable for each node of the graph, and form
a conjunction which contains a binary disequality constraint 6=D(u, v) for each edge (u, v) of the
graph. (If D contains more than 3 values, then we add a clique C containing |D| − 3 nodes to
the graph GP and connect each node, except the nodes zi, in the original graph to each node of
this clique. This ensures that each node, except the nodes zi, in the original graph GP must be
coloured with one of the 3 colours not used to colour C.)

Now add quantifiers to this conjunction of constraints as follows. First existentially quantify
the variable w (and all the variables corresponding to nodes of the clique C, if present). Note that
once values have been assigned to these nodes there are just two remaining possible values for each
node xi and yi.

x4y4
z4

x3y3

z3

x2

z2z1

y1
x1 y2

ρnae (, ,)x1 x2 x4 ρnae (, ,)x2 x3 x4

w

Figure 2: The construction used in the proof of Proposition 5.1 (adapted from Figure 9.8 in [43])

Next, for each consecutive quantifier of P (in order) introduce 3 consecutive quantifiers as
follows:

• For each existential quantifier in P, ∃vi, introduce ∃zi∃yi∃xi;

• For each universal quantifier in P, ∀vi, introduce ∀zi∃yi∃xi.

Finally, add existential quantifiers for all remaining variables (corresponding to the constraints of
P). This completes the definition of P ′.

It is straightforward to check that there is an assignment of Boolean values to the variables
v1, v2, . . . , vn satisfying all of the constraints of P if and only if there is an assignment of values
from D to the variables of P ′ satisfying all the constraints of P ′. This is because to satisfy the
constraints of P ′, the 3 nodes in each triangle in GP corresponding to a constraint of P must all
be assigned distinct values, which is possible if and only if the corresponding nodes xi1 , xi2 and

15

xi3 connected to them do not all take the same value (which mimics satisfying assignments for the
constraint %nae(vi1 , vi2 , vi3)). Furthermore, the construction of the quantifiers in P ′ ensures that
the sentence P ′ is true if and only if P is true. To see this, note that for any variable vi of P which
is universally quantified, the universal quantification on the corresponding zi in P ′ forces yi (and,
hence, xi) to take both remaining available values, which mimics the universal quantification on vi.

Hence, we have established a reduction from QCSP({%nae}) to QCSP({6=D}), and it is clear that
this reduction can be carried out in logarithmic space. Since QCSP({%nae}) is PSPACE-complete,
by Corollary 3.9, the result follows.

Theorem 5.2 For any finite set D with |D| ≥ 3, and any Γ ⊆ RD, if every f ∈ s-Pol(Γ) is of the
form f(x1, . . . , xn) = π(xi) for some 1 ≤ i ≤ n and some permutation π on D, then QCSP(Γ) is
PSPACE-complete.

Proof: By Lemma 1.3.1 (b) of [45], Pol({6=D}), for |D| ≥ 3, consists of all operations of the form
described in the Theorem. Hence Pol({6=D}) = s-Pol({6=D}), and we can apply Theorem 3.16 and
Proposition 5.1.

We now give an example of a relation which has all possible non-surjective polymorphisms, but
whose surjective polymorphisms are precisely the operations described in Theorem 5.2.

Example 5.3 Let τs be the s-ary “not-all-distinct” predicate holding on a tuple (a1, . . . , as) if and
only if |{a1, . . . , as}| < s. Note that τs ⊇ {(a, . . . , a) | a ∈ D}, so every instance of CSP({τs}) is
trivially satisfiable by assigning the same value to all variables.

However, by Lemma 2.2.4 of [45], the set Pol({τ|D|}) consists of all possible non-surjective
operations on D, together with all operations of the form given in Theorem 5.2. Hence, {τ|D|}
satisfies the conditions of Theorem 5.2, and QCSP({τ|D|}) is PSPACE-complete (when |D| ≥ 3).

Interestingly, the predicate τ|D| has the property that, for every predicate % ∈ 〈τ|D|〉 \ 〈=D〉, we
have 〈%〉 = 〈τ|D|〉 (Lemma 2.2.4 of [45]). 2

6 Semilattice Operations

A semilattice operation ∗ on a set D is a binary operation that satisfies the following conditions for
all a, b, c ∈ D:

(1) ∗(a, a) = a (idempotency);

(2) ∗(a, b) = ∗(b, a) (commutativity);

(3) ∗(∗(a, b), c) = ∗(a, ∗(b, c)) (associativity).

Normally we shall use infix notation for semilattice operations and write a∗b rather than ∗(a, b). As
is easily seen, the propositional conjunction and disjunction operations are semilattice operations
on the set {0, 1}.

It is well-known that every semilattice operation ∗ induces a partial order ≤∗, where a ≤∗ b if
and only if a ∗ b = b. For a, b ∈ D, the element a ∗ b is the least upper bound of a, b with respect to
this order, i.e. a, b ≤∗ a ∗ b and, for any d ∈ D such that a, b ≤∗ d, we have a ∗ b ≤∗ d.

Every semilattice operation ∗ has a zero element 0 with the property that a ≤∗ 0, or equivalently
a ∗ 0 = 0 ∗ a = 0, for all a ∈ A. If a semilattice operation also has a unit element — that is an
element 1 such that 1 ≤∗ a, or equivalently 1 ∗ a = a ∗ 1 = a, for all a ∈ A — then we say that it is

16

a semilattice operation with unit or a monoid operation; otherwise, we say that it is a semilattice
operation without unit. Interestingly, if ∗ is a monoid operation then, for any a, b ∈ D, there is a
unique greatest lower bound c of a, b with respect to this order, i.e. c ≤∗ a, b and, for any d ∈ D
such that d ≤∗ a, b, we have d ≤∗ c (in other words, the order ≤∗ is a lattice order). The greatest
lower bound of a, b will be denoted by a◦ b. Operation ∗ can be extended to an operation on tuples
of elements from D in the usual way (by applying the operation componentwise).

All forms of semilattice operations were shown to guarantee CSP tractability in [36]. For the
QCSP the situation is rather different. The following theorem completely classifies the complexity
of the QCSP over a set of predicates invariant under a semilattice operation.

Theorem 6.1 Let ∗ be a semilattice operation on a finite set D. If ∗ is an operation with unit
then, for any finite Γ ⊆ Inv({∗}), the problem QCSP(Γ) is in PTIME. Otherwise, there exists a
finite Γ ⊆ Inv({∗}) such that QCSP(Γ) is PSPACE-complete.

Note that the first part of this theorem establishes only “local tractability”, that is, tractability
for any finite subset of Inv({∗}).

The proof of Theorem 6.1 is given in Sections 6.1 and 6.2 below.

6.1 Semilattice operations with unit

In this subsection, we demonstrate that finite sets of predicate which are invariant under a semi-
lattice operation with unit give rise to tractable subproblems of the QCSP.

Our first step is to demonstrate that constraints which are invariant under a semilattice opera-
tion are decomposable into what we call Horn-like clauses. We introduce the following definitions
and notation. A downward literal is an expression of the form v ≤∗ d, where v is a variable and
d ∈ D; and, an upward literal is an expression of the form v 6≤∗ d, where v is a variable and
d ∈ D. We will call literals of the form v ≤∗ 0 or v 6≤∗ 0 trivial. A literal occurring in a QCSP
instance is an ∃-literal (∀-literal) if its variable is an existentially (universally) quantified variable.
A Horn-like clause is a set with downward and upward literals as elements which contains at most
one downward literal. A Horn-like clause is interpreted as the disjunction of the literals that it
contains; that is, it is considered to be true if at least one of its literals is true.

Lemma 6.2 A predicate % is invariant under a semilattice operation if and only if % can be repre-
sented as a conjunction of Horn-like clauses.

Proof: For any semilattice operation ∗, the element v1 ∗ v2 is the least upper bound of v1, v2

with respect to the order ≤∗. Hence, v1 ∗ v2 ≤∗ a if and only if v1 ≤∗ a and v2 ≤∗ a. Using this
result it is straightforward to verify that any Horn-like clause is invariant under the corresponding
semilattice operation.

For the converse, let % be invariant under a semilattice operation ∗. It suffices to show that for
each ~a /∈ %, there exists a Horn-like clause H~a such that any tuple from % satisfies H~a, but ~a does
not satisfy H~a. Fix ~a /∈ %, and define σ~a = {~b : ~b ∈ %,~b ≤∗ ~a} where ≤∗ is extended to a partial
ordering on tuples by defining ~s ≤∗ ~t if and only if at all coordinates i, ~s(i) ≤∗ ~t(i).

If σ~a is empty, then it can be verified that the Horn-like clause H~a =
⋃r

i=1{~v(i) 6≤∗ ~a(i)}
has the desired properties, where r denotes the length of the tuples ~v and ~a. Otherwise, define
~m = ~b1 ∗~b2 ∗ . . . ∗~bn, where σ~a = {~b1,~b2, . . . ,~bn}. It is straightforward to verify that σ~a is invariant
under ∗, so ~m ∈ σ~a. Since σ~a ⊆ %, ~m 6= ~a, and ~m and ~a differ at some coordinate, say coordinate j
(that is, ~m(j) 6= ~a(j), which implies that ~m(j) <∗ ~a(j)). Hence, it can be verified that the Horn-like
clause H~a = (

⋃r
i=1{~v(i) 6≤∗ ~a(i)}) ∪ {~v(j) ≤∗ ~m(j)} has the desired properties.

17

Lemma 6.2 generalizes Horn’s classic theorem that a constraint with relation invariant under
logical AND (∧) over the set {0, 1} is logically equivalent to a conjunction of Horn clauses [33]. To
see this, we let ∗ = ∧; then we have 1 ≤∗ 0 and the only non-trivial downward literal is one of the
form v ≤∗ 1, which is equivalent to the positive literal v. The only non-trivial upward literal is one
of the form v 6≤∗ 1, which is equivalent to the negative literal v.

Our next step is to define a proof system, called QCSP-literal-resolution, and show that it
is sound and complete for quantified formulas consisting of Horn-like clauses, with respect to a
semilattice operation ∗ with unit. We define a Horn-like clause H appearing in a QCSP P to be
an existential unit clause if it contains only one ∃-literal, the single ∃-literal is downward, and for
every ∀-variable y in H, y comes before the variable of the ∃-literal in the quantification order of
the formula P.

Definition 6.3 Let P be a QCSP instance with quantifier-free part ψ where every predicate in ψ
is a Horn-like clause (with respect to a semilattice operation ∗ with unit). We say that a Horn-like
clause H is derivable by QCSP-literal-resolution from the formula ψ, denoted ψ `l H, if it can be
obtained by applying the following rules.

0. For every predicate H in ψ, ψ `l H.

1. If ψ `l H1, ψ `l H2, and there exist elements a, b ∈ D such that (x ≤∗ a) ∈ H1 and
(x ≤∗ b) ∈ H2, for some existentially quantified variable x, then

ψ `l (H1 \ {x ≤∗ a}) ∪ (H2 \ {x ≤∗ b}) ∪ {x ≤∗ a ◦ b}.

2. If ψ `l H and (x ≤∗ a) ∈ H for some a ∈ D and some existentially quantified variable x,
then for all b ∈ D such that a ≤∗ b

ψ `l (H \ {x ≤∗ a}) ∪ {x ≤∗ b}.

3. If ψ `l U and ψ `l H, where U is an existential unit clause with downward literal (x ≤∗ a),
and (x 6≤∗ a) ∈ H, then

ψ `l (U \ {x ≤∗ a}) ∪ (H \ {x 6≤∗ a}).

4. If ψ `l H, y is a universally quantified variable which is the last variable in the quantification
order of ψ occurring in H, and there exists a value a ∈ D such that the assignment y = a
does not satisfy Hy (the clause containing all y-literals in H), then

ψ `l H \Hy.

Lemma 6.4 Let P be a QCSP instance with quantifier-free part ψ such that every predicate in ψ
is a Horn-like clause (with respect to a semilattice operation ∗ with unit) without trivial literals.
The sentence P is false if and only if ψ `l ∅.

Proof: Each of the rules listed in Definition 6.3 preserves satisfiability, so the “if” direction is
straightforward, and we will focus on the “only if” direction. Assume without loss of generality
that P has the form

∀y1∃x1 . . . ∀yn∃xnψ(y1, x1, . . . , yn, xn),

18

and suppose that it is not the case that ψ `l ∅. Define (for k = 1, . . . , n)

τk(a1, . . . , ak) = ∗{ a | the assignment y1 = a1, . . . , yk = ak, xk = a

satisfies all existential unit clauses C containing xk such that ψ `l C}.
Note that τk(a1, . . . , ak) = 0 if there is no derivable existential unit clause containing xk. We claim
that the mappings τk form a winning strategy for ∃ in ψ. Let f : {y1, . . . , yn} → D be an assignment
to the ∀-variables of ψ; we wish to show that the assignment

τf (z) =
{

f(yk) if z = yk,
τk(f(y1), . . . , f(yk)) if z = xk

satisfies all clauses of ψ. By rule 0, it suffices to show that τf satisfies all clauses H such that
ψ `l H. Recall that a Horn-like clause potentially contains four types of literals: upward ∃-literals,
upward ∀-literals, downward ∃-literals and downward ∀-literals, but has at most one downward
literal of either kind. We shall prove that τf satisfies all clauses H such that ψ `l H by induction
on the number, u, of upward ∃-literals contained in H.

We split into three cases.
Case 1: u = 0 and H does not contain any downward ∃-literals either. In this case all literals

of H are ∀-literals, so if τf does not satisfy H, then the empty set can be derived from H using
rule 4, a contradiction.

Case 2: u = 0 and H contains a downward ∃-literal. By repeatedly applying rule 4 to eliminate
∀-literals in H as many times as possible we obtain a new clause H ′. If the last variable in H ′

(relative to the quantification order of ψ) is a universally quantified variable y, then for all a ∈ D,
every extension of the assignment y = a satisfies H ′, and so in particular H ′ is satisfied by f . On
the other hand, if the last variable in H ′ is an ∃-variable x, then H ′ is an existential unit clause
and is satisfied by τf by the definition of the τk.

Case 3 (Induction Step): Assume that H contains at least one upward ∃-literal, xk 6≤∗ d, and
that all derivable clauses with a smaller number of upward ∃-literals are satisfied by τf . Since
clauses in ψ contain only non-trivial literals, it can be easily verified that H cannot contain the
literal xk 6≤∗ 0, that is, we have d <∗ 0. Suppose (for contradiction) that τf does not satisfy H;
then τf (xk) ≤∗ d.

For i = 1, . . . , k, denote f(yi) by ai. Since τf (xk) <∗ 0, there exists an existential unit clause C
containing xk such that ψ `l C and C is not satisfied by the assignment y1 = a1, . . . , yk = ak, xk = 0
(note that C is clearly satisfied by the assignment y1 = a1, . . . , yk = ak, xk = 1). Consider the
existential unit clause U obtained by applying rule 1 to all such clauses. Note that a further
application of rule 1 to C and U would produce U again. Clearly, we have that ψ `l U and U is not
satisfied by the assignment y1 = a1, . . . , yk = ak, xk = 0. Let xk ≤∗ t be the only downward ∃-literal
in U . We argue that t = τf (xk). If, for some a, the assignment y1 = a1, . . . , yk = ak, xk = a satisfies
all derivable existential unit clauses containing xk, then, in particular, it satisfies U . Since U is
not satisfied by the assignment y1 = a1, . . . , yk = ak, xk = 0, it follows that a ≤∗ t. Then, by the
definition of τf , we have τf (xk) ≤∗ t. On the other hand, the assignment y1 = a1, . . . , yk = ak, xk = t
satisfies all derivable existential unit clauses containing xk. Clearly, it satisfies all such clauses that
are satisfied already by the assignment y1 = a1, . . . , yk = ak, xk = 0. Furthermore, it satisfies the
downward literal xk ≤∗ t′ in any other derivable existential unit clause C ′ containing xk because, as
we mentioned above, the application of rule 1 to C ′ and U gives U , implying that t ◦ t′ = t, which
is equivalent to t ≤∗ t′. Hence, by the definition of τf , we have t ≤∗ τf (xk), and so t = τf (xk).
To summarize, the derivable existential unit clause U contains the literal xk ≤∗ τf (xk) and has the
property that τf does not satisfy U \ {xk ≤∗ τf (xk)}.

19

Now by applying rule 2 we obtain ψ `l U ′, where U ′ = (U \{xk ≤∗ τf (xk)})∪{xk ≤∗ d}. Finally,
by applying rule 3 we obtain ψ `l H ′, where H ′ = (U ′ \ {xk ≤∗ d}) ∪ (H \ {xk 6≤∗ d}). Notice that
H ′ is not satisfied by τf . Indeed, τf does not satisfy U \ {xk ≤∗ τf (xk)}, and U ′ \ {xk ≤∗ d} is just
the same clause. Furthermore, τf does not satisfy H \ {xk 6≤∗ d} because, by our assumption, it
does not satisfy H. The clause H ′ contains one less upward ∃-literal than H, but is not satisfied
by τf ; this contradicts our inductive hypothesis.

Proposition 6.5 Let ∗ be an arbitrary semilattice operation with unit on a finite set D. For any
finite Γ ⊆ Inv({∗}), the problem class QCSP(Γ) is in PTIME.

Proof: Let P = ∀y1∃x1 . . .∀yn∃xnψ be an instance of QCSP(Γ), and let ∗ be a semilattice opera-
tion with unit element 1 and zero element 0 under which Γ is invariant. By appeal to Lemma 6.2,
every predicate invariant under ∗ can be represented as a conjunction of Horn-like clauses. In gen-
eral, the size of this representation can grow exponentially (in the size of the predicate). However,
for any fixed finite Γ ⊆ Inv({∗}), this representation for all predicates in Γ can be found in constant
time. Hence, we can assume that ψ contains only Horn-like clauses. We assume without loss of
generality that no literals in ψ are trivial.

Let B∃ denote the subset of ψ containing all clauses with a downward ∃-literal. Let B∀ denote
the subset of ψ containing all clauses with a downward ∀-literal; and let U denote the subset of
ψ containing all clauses having only upward literals. It can be straightforwardly verified that for
every clause C derivable from ψ by QCSP-literal-resolution, there is a single H ∈ B∀∪U such that
C is derivable from PH

def= ∀y1∃x1 . . .∀yn∃xn(B∃ ∪ {H}). (This is because, by examination of the
five rules, any derivable clause with a downward ∃-literal can be derived from B∃; the claim can
then be proved by induction on the structure of a proof.) Hence, by Lemma 6.4, deciding whether
or not P is true amounts to deciding whether or not PH is true, for all H ∈ B∀ ∪ U . We will
therefore show how to decide any such PH in polynomial time. There are two cases to consider:

Case 1: H ∈ U . In this case we claim that the sentence PH is true if and only if the CSP instance

∃x1 . . .∃xn

(∧
{C \ C∀ | C ∈ B∃ ∪ {H}}

)

is satisfiable (where C∀ denotes the set of all ∀-literals in the clause C). To establish this
claim note that if this CSP instance is satisfiable, a satisfying assignment for it gives a
winning strategy for PH (which ignores the ∀-player); on the other hand, if this CSP instance
is unsatisfiable, then PH is unsatisfiable as the ∀-player can set all ∀-variables to 1 to falsify
all ∀-literals, causing the ∃-player to lose. Satisfiability of this CSP instance can be decided
in polynomial time by the results of [36], because all predicates in it are invariant under a
semilattice operation.

Case 2: H ∈ B∀. In this case, let y denote the variable in the downward literal of H and remove
all ∀-literals not over y from the clauses of B∃∪{H} to obtain the set of clauses ψ′. We claim
that PH is true if and only if P ′H = ∀y1∃x1 . . .∀yn∃xn(ψ′) is true. We justify this as follows.
First, from a QCSP-literal-resolution derivation of ∅ from PH , we may obtain a derivation of
∅ from P ′H by removing, in the derivation, all ∀-literals not including y. Indeed, it is easy to
check, by examining the five rules, that every step in the obtained derivation remains valid.
Second, a derivation of ∅ from P ′H gives a derivation of ∅ from PH by adding in ∀-literals
as appropriate to derive (from PH) a clause consisting only of ∀-variables, from which ∅ can
be derived by repeated applications of QCSP-literal-resolution rule 4 (with a = 1). Notice

20

that when the last variable in a clause in the quantification order is a ∀-variable y, all literals
involving y can be removed by using rule 4 with a = 1.

We now show how to decide if P ′H is true by reducing this question to an equivalent CSP
instance. Let yi denote the single ∀-variable occurring in ψ′. Clearly, P ′H is equivalent
to P ′′H = ∃x1 . . .∃xi−1∀yi∃xi∃xi+1 . . .∃xn(ψ′). For all a ∈ D, define P ′′a to be the formula
P ′′a = ∃xa

1 . . . ∃xa
n(ψ′[yi/a])), that is, the formula obtained from P ′′H by eliminating yi from

the quantifier prefix, instantiating yi with the value a in ψ′, and renaming each variable xj

as xa
j . We want to find assignments satisfying the predicates of the P ′′a such that, for each

j = 1, . . . , i − 1, the values received by the variables xa
j are the same for all a. We can

formulate the existence of such assignments as a CSP instance which has all the predicates
of all the P ′′a as constraints, as well as additional constraints xa

j = xa
j′ for all a ∈ D and all

1 ≤ j < j′ ≤ i − 1. This CSP instance is polynomial in the size of PH , and all predicates
in it are invariant under the semilattice operation ∗. Hence, this instance can be decided in
polynomial time by the results of [36].

6.2 Semilattice operations without unit

In this subsection, we show that if a semilattice operation ∗ on a set D has no unit then QCSP(Inv({∗}))
is PSPACE-complete.

First we note that if the semilattice operation ∗ has no unit then there are at least two different
minimal elements with respect to ≤∗. We shall fix two such elements a, b and denote the set
D \ {a, b} by E. Note that the minimality of a, b implies that, for any d ∈ D, if d 6= a then
a ∗ d ∈ E, and if d 6= b then b ∗ d ∈ E.

To prove the PSPACE-completeness of QCSP(Inv({∗})), we will make use of the following
known combinatorial problem.

Definition 6.6 (Succinct Graph Unreachability) A succinct representation of a digraph with
n vertices, where n = 2c is a power of two, is a Boolean circuit C with 2c inputs. The digraph
represented by C, denoted GC , is defined as follows: the vertices of GC are {1, 2, . . . , n}; the pair
(i, j) is an edge of GC if and only if C accepts the binary representations of the c-bit integers i, j
as inputs.

In the Succinct Graph Unreachability problem we are given a succinct representation of
a digraph G and two vertices s, t of the graph. The question is whether there is no path in G that
connects s and t.

It is known (see, e.g., Exercise 20.2.9(b) of [43]) that the Succinct Graph Reachability
problem is PSPACE-complete, and it follows that Succinct Graph Unreachability is also
PSPACE-complete.

Proposition 6.7 Let ∗ be a semilattice operation without unit. The Succinct Graph Unreach-
ability problem is polynomial-time reducible to QCSP(Γ) where Γ is the set of all at most ternary
relations from Inv({∗}).

We remark that, in contrast to earlier results, the type of reduction employed here is polynomial-
time reduction.

21

Proof: Let C be a succinct representation of a directed graph GC . Encodings of vertices of GC ,
that is c-tuples, will be denoted by ~x, ~y etc., where ~x = (x1, . . . , xc).

Let %~s(~x) denote the formula %s1(x1) ∧ . . . ∧ %sc(xc), where each %d is a constant relation, that
is, a unary relation containing the single tuple (d). It is easily checked that each %d is invariant
under the operation ∗ (here, the idempotency of ∗ is used).

Now define a predicate ϕC such that ϕC(~x, ~y, z1, z2) is true if and only if ~x, ~y ∈ {a, b}c and
~x = ~y, or there is a path in GC from the vertex encoded ~x to the vertex encoded ~y and z1 = z2,
or such a path does not exist, or one of ~x, ~y does not belong to {a, b}c. Note that ϕC(~x, ~y, z1, z2)
is false precisely when ~x and ~y are encodings of distinct vertices in GC which are connected by a
path, and z1 6= z2.

Using these predicates, an instance C,~s,~t of the Succinct Graph Unreachability problem
can be reduced to the formula

P = ∃~x, ~y ∀z1, z2 %~s(~x) ∧ %~t(~y) ∧ ϕC(~x, ~y, z1, z2).

Hence there exists a polynomial-time reduction from Succinct Graph Unreachability to
QCSP(Γ) where Γ is the set of all at most ternary relations from Inv({∗}), provided that the
predicate ϕC can be transformed to an instance of QCSP(Γ) in polynomial time.

Step 1: Expressing the predicate ϕC in simpler terms. We shall first show that the pred-
icate ϕC can be expressed using the predicate ϕ(~x, ~y, z1, z2) which is defined as follows. Predicate
ϕ(~x, ~y, z1, z2) is true if and only if ~x, ~y ∈ {a, b}c and ~x = ~y, or there is an edge in GC from the
vertex encoding ~x to the vertex encoding ~y and z1 = z2, or such an edge does not exist, or one of
~x, ~y does not belong to {a, b}c.

The most straightforward way to construct the predicate ϕC is to define it inductively, as follows:

ϕ′0(~x, ~y, z1, z2) = ϕ(~x, ~y, z1, z2),
ϕ′i(~x, ~y, z1, z2) = ∀~wi∃ri ϕ′i−1(~x, ~wi, z1, ri) ∧ ϕ′i−1(~wi, ~y, ri, z2).

and ϕC = ϕ′c. Unfortunately, ϕ′c is exponentially larger than ϕC , so we cannot use this technique
directly. However, we can use a standard trick to obtain a shorter expression for ϕC using universal
quantifiers. To do this, we define the predicates ϕi inductively, as follows:

ϕ0(~x, ~y, z1, z2) = ϕ(~x, ~y, z1, z2),
ϕi(~x, ~y, z1, z2) = ∀~wi∃ri∀~ui, ~vi∃z′i, z′′i

ϕi−1(~ui, ~vi, z
′
i, z

′′
i) ∧ ψ(~x, ~y, ~ui, ~vi, ~wi, ri, z1, z2, z

′
i, z

′′
i).

In the above expression, the predicate ψ(~x, ~y, ~u,~v, ~w, z, z1, z2, z
′, z′′) is defined by the following

conditions:

• ~x, ~w, ~u,~v ∈ {a, b}c and ~u = ~x,~v = ~w implies z′ = z1, z
′′ = z, and

• ~y, ~w, ~u,~v ∈ {a, b}c and ~u = ~w,~v = ~y implies z′ = z, z′′ = z2.

In other words, ψ is false only if the equalities on the left hold while the equalities on the right do
not.

Finally, to obtain a QCSP instance we transform ϕc to prenex normal form moving all the
quantifiers to the beginning of the formula preserving their order. It is not hard to see that the
obtained formula is equivalent to ϕc. We set ϕC to be equal to this formula.

22

To show that this definition correctly captures ϕC , we prove by induction that ϕi(~x, ~y, z1, z2)
is false precisely when ~x, ~y are encodings of distinct vertices s, t of GC which are connected by a
path of length at most 2i, but z1 6= z2. The base case of induction follows from the definition of ϕ.
Suppose that the result holds for ϕi−1.

Suppose first that ~x, ~y are encodings of distinct vertices of GC that are connected by a path
of length at most 2i. Choose some z1, z2. If z1 = z2 then take ri = z′i = z′′i = z1 = z2. In this
case ϕi−1(~ui, ~vi, z

′
i, z

′′
i) and ψ(~x, ~y, ~ui, ~vi, ~wi, ri, z1, z2, z

′
i, z

′′
i) hold for any ~ui, ~vi, ~wi, so ϕi(~x, ~y, z1, z2)

is true. If z1 6= z2 then, since ~x, ~y are connected with a path of length at most 2i, there is a vertex ~wi

such that ~x, ~wi and ~wi, ~y are connected with paths of length at most 2i−1. Choose ~ui = ~x,~vi = ~wi.
Then if ϕi−1(~ui, ~vi, z

′
i, z

′′
i) is true then we have z′i = z′′i , and if ψ(~x, ~y, ~ui, ~vi, ~wi, ri, z1, z2, z

′
i, z

′′
i) is

true then we have ri = z1. Similarly we can derive ri = z2, which means that ϕi(~x, ~y, z1, z2) is false.
Suppose now that ~x, ~y are encodings of vertices of GC that are not connected by a path of

length at most 2i. Choose some z1, z2. If ~wi 6∈ {a, b}c then set ri = z′i = z′′i = a. Under this
assignment we have that ψ(~x, ~y, ~ui, ~vi, ~wi, ri, z1, z2, z

′
i, z

′′
i) and ϕi−1(~ui, ~vi, z

′
i, z

′′
i) hold for any ~ui, ~vi,

so ϕi(~x, ~y, z1, z2) is true. Hence we may assume that ~wi ∈ {a, b}c. In this case at least one of the
pairs ~x, ~wi and ~wi, ~y are not connected by a path of length at most 2i−1. Without loss of generality
suppose that there is no such path for ~x, ~wi. Then set ri = z2. If neither ~ui = ~x,~vi = ~wi nor
~ui = ~wi, ~vi = ~y then by setting z′i = z′′i = a we make both predicates true, so ϕi(~x, ~y, z1, z2) is
true. If ~ui = ~x,~vi = ~wi then we set z′i = z1, z

′′
i = ri. Then ψ(~x, ~y, ~ui, ~vi, ~wi, ri, z1, z2, z

′
i, z

′′
i) is true.

Since ~ui, ~vi are not connected with a path of length 2i−1, ϕi−1(~ui, ~vi, z
′
i, z

′′
i) is also true. Finally,

if ~ui = ~wi, ~vi = ~y we set z′i = ri, z
′′
i = z2, and, as ri = z2, both predicates are true, so again

ϕi(~x, ~y, z1, z2) is true.
Finally, suppose that one of ~x, ~y does not belong to {a, b}c, say, ~x 6∈ {a, b}c. If ~wi 6∈ {a, b}c then

we proceed as above. Otherwise set ri = z2. If ~ui 6= ~wi or ~vi 6= ~y then setting z′i = z′′i = a we make
both predicates true. If ~ui = ~wi and ~vi = ~y then set z′i = ri, z

′′
i = z2.

This completes the proof by induction and establishes that the predicate ϕC can be transformed
in polynomial time into a QCSP instance containing only the predicates ϕ and ψ. As is easily seen
both predicates, ϕ and ψ, are invariant under the semilattice operation, however, they do not fit
our purpose, because the explicit representations of these predicates are exponential in the size of
the original Succinct Graph Unreachability instance. Thus, we need to show that these two
predicates can be expressed by using at most ternary predicates from Inv({∗}) in polynomial time.

Step 2: Expressing the predicates ϕ and ψ. First, we introduce three relations corresponding
to three types of logic gates. We will call these relations gate relations. The relations are partly
given by their matrices (where columns correspond to tuples); the initial block of tuples contains
the tuples that encode the gate, while the remaining tuples are needed for technical purposes and
to obtain a relation invariant under the semilattice operation. Element a will be interpreted as
FALSE and b as TRUE.

%not =
(

a b
b a

)
∪ (E ×D)

%or =

a a b b
a b a b
a b b b

 ∪ (E ×D ×D) ∪ (D ×E ×D)

%and =

a a b b
a b a b
a a a b

 ∪ (E ×D ×D) ∪ (D ×E ×D)

23

It is straightforward to verify that each of these gate relations is invariant under the semilattice
operation ∗.

The circuit C representing the graph GC is a Boolean circuit with gates {g1, . . . , gk}, inputs
u1, . . . , u` and output z. For each gate gi, we denote the inputs of gi by xi, yi (to simplify the
notation we shall assume that if gi is a NOT-gate then it still has the second input yi, but it
is void), and its output by zi. Then u1, . . . , u` ∈ {x1, . . . , xk, y1, . . . , yk}, z ∈ {z1, . . . , zk} and
z1, . . . , zk ∈ {x1, . . . , xk, y1, . . . , yk} ∪ {z}. Without loss of generality we may assume that z = zk.
We will also assume that C has no unused inputs, that is, in the graph representation of C there is
a path from every ui to z. The encoding of circuit C will be the following existential conjunctive
formula:

θC(u1, . . . , u`, z) = ∃z1, . . . , zk−1

k∧

i=1

%wi(xi, yi, zi),

where wi denotes the type of gate gi: NOT, AND, or OR.
We need three observations about the formula θC .

(1) If u1, . . . , u` ∈ {a, b} and the quantifier free part of θC(u1, . . . , u`, z) is satisfied, then z1, . . . , zk ∈
{a, b}.
This is easily verified using induction on the depth of circuit C, and the fact that, for any
w ∈ {NOT,AND,OR}, if x, y ∈ {a, b} and %w(x, y, z) holds then z ∈ {a, b}.

(2) If u1, . . . , u` ∈ {a, b} and θC(u1, . . . , u`, z) holds, then z = b if and only if C(u1, . . . , u`) is
TRUE; otherwise z = a.

Again this is easily verified using induction on the depth of the circuit and the structure of
the relations.

(3) If {u1, . . . , u`} ∩ E 6= ∅ then θC(u1, . . . , u`, z) holds for any z ∈ D.

To establish this, assume without loss of generality that uj ∈ E. We proceed by induction
on the depth of circuit C. Recall that C is assumed to have no unused inputs. In the base
case of induction, when C contains only one gate, the result follows from the definitions of
the gate relations. For the induction step, remove the output gate gk from C; the rest of C
then breaks into two circuits C1 and C2 (which may overlap). If gk is a NOT-gate C2 can
be assumed to be empty. At least one of them uses input uj ; without loss of generality we
assume it is C1. Let the output of C1 be zk−1. By the induction hypothesis, θC1(u1, . . . , u`, d)
holds for any d ∈ E. Since zk−1 is an input for gk, the result follows from the definition of
the gate relations.

Now let η be the following ternary relation

η = {

b
d
d

 | d ∈ D} ∪ (({a} ∪ E)×D ×D).

It is straightforward to verify that η is invariant under the semilattice operation ∗.
We claim that the predicate ϕ can be expressed in terms of the predicates θC and η in the

following way:
ϕ(~x, ~y, z1, z2) = ∃z θC(~x, ~y, z) ∧ η(z, z1, z2).

To establish this claim, note first that if either ~x or ~y contains a component from E, then
choosing z = a we satisfy both predicates on the right-hand side. The same is true if C(~x, ~y) is

24

FALSE. Finally, if ~x, ~y correspond to vertices that are connected, that is, C(~x, ~y) is TRUE, then
the only value of z satisfying θC is b, so to satisfy η we have to have z1 = z2.

We have shown that the predicate ϕ can be expressed in polynomial time by using at most
ternary predicates from Inv({∗}). It only remains to show that the predicate ψ defined earlier can
also be expressed in polynomial time by using at most ternary predicates from Inv({∗}).

Define the relation σ, as follows

σ =

a b
a b
b b

 ∪ (E ×E × {b}) ∪ (((D ×D) \ {(a, a), (b, b)})× ({a} ∪ E)).

It is straightforward to verify that σ is invariant under the semilattice operation ∗. Let

ξ=(~x, ~y, z) = ∃s1, . . . , sc∃z1, . . . , zc−2

c∧

i=1

σ(xi, yi, si) ∧ %and(s1, s2, z1)

∧
c−2∧

i=2

%and(zi−1, si+1, zi) ∧ %and(zc−2, sc, z).

Furthermore, let

ξ→(~x, ~y, ~u,~v, z1, z2, z
′
1, z

′
2) = ∃s1, s2∃t

ξ=(~x, ~u, s1) ∧ ξ=(~y,~v, s2) ∧ %and(s1, s2, t) ∧ η(t, z1, z
′
1) ∧ η(t, z2, z

′
2).

We claim that

ψ(~x, ~y, ~u,~v, ~w, z, z1, z2, z
′
1, z

′
2) = ξ→(~x, ~w, ~u,~v, z1, z, z′1, z

′
2) ∧

ξ→(~w, ~y, ~u,~v, z, z2, z
′
1, z

′
2).

To establish this claim, first consider the predicate ξ=(~x, ~y, z). If this predicate holds and ~x = ~y
then all the si equal b, and furthermore all the zi and z equal b. If ~x 6= ~y or one of them does not
belong to {a, b}c then, for some i, we have xi 6= yi or {xi, yi}∩E 6= ∅, and since σ(xi, yi, si) is true,
si can be chosen from E. Therefore, zi−1, . . . , zc−2, z can be chosen arbitrarily. Thus, ξ=(~x, ~y, z)
is true if and only if either ~x = ~y and ~x, ~y ∈ {a, b}c and z = b, or else ~x 6= ~y and z is arbitrary,
or ~x, ~y 6∈ {a, b}c and z is arbitrary. Similarly, the predicate ξ→(~x, ~y, ~u,~v, z1, z2, z

′
1, z

′
2) is true if and

only if either one of ~x, ~y, ~u,~v is not a member of {a, b}c, or ~x 6= ~u, or ~y 6= ~v, or ~x = ~u, ~y = ~v and
z1 = z′1, z2 = z′2.

Now consider ψ(~x, ~y, ~u,~v, ~w, z, z1, z2, z
′
1, z

′
2). Suppose that ~x, ~w, ~u,~v ∈ {a, b}c, ~u = ~x,~v = ~w.

Then, to ensure that ξ→(~x, ~w, ~u,~v, z1, z, z′1, z
′
2) = 1, we must have z′1 = z1, z

′
2 = z. Similarly, if

~u = ~w,~v = ~y then z′1 = z, z′2 = z2. If these equalities do not hold, or one of ~x, ~w and one of ~w, ~y
are not members of {a, b}c, then both predicates ξ→ are true for any z, z1, z2, z

′
1, z

′
2 and so is ψ.

As easily seen, the number of predicates used to represent ϕ, ψ and ϕC is bounded by a
linear polynomial in the number of gates in circuit C. Therefore, the construction described is
a polynomial-time reduction from the Succinct Graph Unreachability problem to QCSP(Γ)
where Γ is the set of at most ternary predicates invariant under the semilattice operation.

25

7 A Trichotomy Theorem

In this section we apply results from the previous sections to obtain a complete classification of
complexity of QCSP(Γ) in those cases where Γ contains the set ∆ of all graphs of permutations.
Recall that the graph of a permutation π is the binary relation {(x, y) | y = π(x)} (or the binary
predicate π(x) = y). The complexity of CSP(Γ) for such sets Γ is completely classified in [23].

We will need two new surjective operations:

• The k-ary near projection operation,

lk(x1, . . . , xk) =
{

x1 if x1, . . . , xk are all different,
xk otherwise.

• The ternary switching operation,

s(x, y, z) =

x if y = z,
y if x = z,
z otherwise.

Recall that the dual discriminator operation is defined as follows:

d(x, y, z) =
{

y if y = z
x otherwise.

Proposition 7.1 If Γ ⊆ RD, |D| ≥ 3, and l|D| ∈ s-Pol(Γ) then QCSP(Γ) is polynomial-time
reducible to CSP(Inv(Pol(Γ))). In particular, QCSP(Γ) is in NP.

Proof: For any ~a = (a1, . . . , an) ∈ Dn, and any subsequence i1, . . . , ik of the sequence 1, . . . , n,
we define pri1,...,ik

~a to be the k-tuple (ai1 , . . . , aik). Moreover, for any n-ary relation %, we define
pri1,...,ik

% to be the k-ary relation

pri1,...,ik
% = {pri1,...,ik

~a | ~a = (a1, . . . , an) ∈ %}.

For I = {i1, . . . , ik}, we will sometimes write prI% instead of pri1,...,ik
%. Note that Pol({prI%}) ⊇

Pol({%}).
We first clarify the structure of relations over a set D which are invariant under the near-

projection operation l|D|.
Let n denote the set {1, . . . , n}. Suppose I1, . . . , Ik is a partition of n and let %j = prIj

% for
j = 1, . . . , k. Then we write % = %1 × . . . × %k if % can be represented as % = {~a | prIj

~a ∈
%j for every j = 1, . . . , k}.

Lemma 7.2 Let % ∈ R
(n)
D , where |D| ≥ 3.

If % ∈ Inv({l|D|}) and pri% = D for every i ∈ n, then % is of the form

% = %1 × . . .× %k

where each %j = {(a, π2j(a), . . . , πmjj(a)) | a ∈ D}, for some permutations π2j , . . . , πmjj of D.

26

Proof: We prove the lemma by induction on n. When n = 1 the result holds trivially, so consider
the case when n = 2. Assume that % is not a graph of a permutation. Then there exist b1, b2, b ∈ D
such that b1 6= b2 and (b1, b), (b2, b) ∈ % (or (b, b1), (b, b2) ∈ %). Since pr1% = D, it is possible to
choose ~a1,~a2, . . . ,~a|D| ∈ % so that pr1~a1, . . . ,pr1~a|D| are all different, pr1~a1 = (x), where x is an
arbitrary element from D \ {b1, b2}, ~a2 = (b1, b), and ~a|D| = (b2, b). Since % is invariant under l|D|,
we have l|D|(~a1, . . . ,~ak) = (pr1~a1, b) ∈ %, and hence (x, b) ∈ % for all x ∈ D.

It follows that, for any (x, y) ∈ D2 we can choose ~c1,~c2, . . . ,~c|D| ∈ % such that pr1~c1, . . . , pr1~c|D|
are all different, pr1~c1 = (x), pr2~c|D| = (y), and pr2~c1 = . . . = pr2~c|D|−1 = (b). Since % is invariant
under l|D|, we have l|D|(~c1, . . . ,~c|D|) = (x, y) ∈ %, and hence % = D2.

We now prove the induction step. By the argument above, for any pair i, j ∈ n the projection
pri,j% is either D2, or the graph of a permutation. Assume that there exist i, j such that pri,j% is
the graph of a permutation π. By the inductive hypothesis prn\{j}% can be represented in the form

prn\{j}% = %1 × . . .× %k,

and the i-th coordinate position occurs in one of %1, . . . , %k. Suppose, for simplicity, that i is the
last coordinate position in %1, that is,

%1 = {(ai1 , . . . , aim1−1 , ai) | ai1 ∈ D, ais = πs1(ai1)
for s ∈ {2, . . . ,m1 − 1}, ai = πi(ai1)}.

Then, letting

%′1 = {(ai1 , . . . , aim1−1 , ai, aj) | ai1 ∈ D, ais = πs1(ai1)
for s ∈ {2, . . . , m1 − 1}, ai = πi(ai1), aj = ππi(ai1)}

we have % = %′1 × %2 × . . .× %k, as required.
It remains to prove that if pri,j% = D2 for every i, j ∈ n, then % = Dn.
For any a ∈ D, define

%a = {(a1, . . . , an−1) | (a1, . . . , an−1, a) ∈ %}.
Since the operation l|D| is idempotent, that is, it satisfies l|D|(x, . . . , x) = x for all x, %a also belongs
to Inv({l|D|}).

Consider first the case n = 3.
Suppose that, for some a ∈ D, the relation %a is not the graph of a permutation. Then

%a = D2 by the argument above. Take any c ∈ D such that c 6= a. Then there exists a tuple
~c = (c1, c2, c) ∈ %. For 1 ≤ i ≤ |D| − 1, choose ~ai = (xi, yi, a) ∈ %, such that {x1, . . . , x|D|−1, c1} =
{y1, . . . , y|D|−1, c2} = D. Then l|D|(~a1, . . . ,~a|D|−1,~c) = (x1, y1, c) ∈ %. Since we can change y1

whilst keeping the same x1, we conclude that %c is not the graph of a permutation. Thus %c = D2

for all c ∈ D, which implies that % = D3.
Now consider the remaining case, where %a is the graph of a permutation for each a ∈ D. In

this case |%a| = |D| for each a, and since |pr1,2%| = |⋃a∈D %a| = |D2|, we have %a ∩ %b = ∅ for
all a, b ∈ D such that a 6= b. Assume that D = {d1, d2, . . . , d|D|}. For 1 ≤ i ≤ |D| − 1, choose
~ai = (ai, d1, di) ∈ %, and choose ~a|D| = (a1, b, d|D|) ∈ %. Note that a1, . . . , a|D|−1 are all different, and
b 6= d1, because %di ∩%dj = ∅ if i 6= j. Now l|D|(~a1, . . . ,~a|D|) = (a1, b, d1) ∈ %, so (a1, b) ∈ %d1 ∩%d|D| ,
a contradiction.

If n > 3 then, by the inductive hypothesis, we have pri,j,n% = D3 and, consequently, pri,j%a = D2

holds for all 1 ≤ i, j ≤ n − 1. Applying the inductive hypothesis to %a, we obtain %a = Dn−1 for
each a ∈ D, which implies that % = Dn.

27

Lemma 7.3 Let % ∈ R
(n)
D , where |D| ≥ 3.

If % ∈ Inv({l|D|}) and I = {i ∈ n | |pri%| < |D|}, then % = prI%× prn\I%.

Proof: By Lemma 7.2, prn\I% = %1 × . . . × %k where %j = {(a, π2j(a), . . . ,
πmjj(a)) | a ∈ D} and π2j , . . . , πmjj are permutations of D. Denote the set of coordinate indices of
%j by Jj , and let J be a system of representatives of J1, . . . , Jk. Then prJ% = D|J |.

Take an arbitrary ~b ∈ prI% and ~c ∈ prJ%. There exists ~a|D| ∈ prI∪J% such that prI~a|D| = ~b. For
1 ≤ i ≤ |D|− 1, choose ~ai ∈ prI∪J% such that prJ~a1 = ~c and for each j ∈ J , {prj~ai | 1 ≤ i ≤ |D|} =
D. (This is possible because prJ% = D|J |.)

Now let ~d = l|D|(~a1, . . . ,~a|D|) ∈ prI∪J%. It is easy to check that prI
~d = ~b and prJ

~d = ~c. Hence,
prI∪J% = prI%× prJ%. Finally, by the choice of J , any element from prI∪J% has a unique extension
to an element of %, and the result follows.

Now we can complete the proof of Proposition 7.1 by constructing a polynomial-time reduction
from QCSP(Γ) to CSP(Inv(Pol(Γ))) for any Γ ⊆ RD, with |D| ≥ 3, such that l|D| ∈ s-Pol(Γ) .

Let P = Q1x1 . . .Qlxl φ be an instance of QCSP(Γ) where φ = %1(~v1) ∧ . . . ∧ %q(~vq). For any
pair %s(~vs) and %t(~vt) of atomic formulas in φ, we can replace %s(~vs) by the atomic formula %′s(~vs)
which is equivalent to %s(~vs) ∧ ∃y1, . . . , yp%t(~vt)) where y1, . . . , yp are the variables that appear in
~vt but not in ~vs. If we repeat this process until no further changes result, we obtain (in polynomial
time) an instance P ′ = Q1x1 . . .Qlxl φ′ which is equivalent to the original instance P. Moreover,
all predicates in φ′ belong to 〈Γ〉, and hence, by Proposition 3.3, to Inv(Pol(Γ)).

Note that, if two constraints in φ′ share a variable then the projections of the corresponding
predicates on the coordinates where this variable occurs are the same. If one of the predicates in φ′

is always false, or if some variable that cannot take all values is universally quantified in P ′, then
clearly P ′ is false, and so is P. Otherwise, by Lemmas 7.2 and 7.3, φ′ can be represented as φ1∧φ2

so that φ1 and φ2 have no variable in common, φ1 is a conjunction of graphs of permutations, and
no variable in φ2 can take all possible values. Hence P ′ can be represented as a conjunction of two
sentences: one (corresponding to φ1) is an instance of QCSP(∆), and the other (corresponding to
φ2) is an instance of CSP(Inv(Pol(Γ))). It is easy to check that ∆ ⊆ Inv({d}). Hence, since the dual
discriminator operation is a near-unanimity operation, by Theorem 4.5, we can solve any instance
of QCSP(∆) in polynomial time, and so reduce QCSP(Γ) to CSP(Inv(Pol(Γ))) in polynomial time.

Theorem 7.4 Let ∆ ⊆ Γ ⊆ RD, and |D| ≥ 3.

- If s-Pol(Γ) contains the dual discriminator d, or the switching operation s, or an affine oper-
ation, then QCSP(Γ) is in PTIME;

- else, if s-Pol(Γ) contains l|D|, then QCSP(Γ) is NP-complete;

- else QCSP(Γ) is PSPACE-complete.

Proof: Chapter 5 of [52] shows that, either s-Pol(Γ) consists of all projections (that is, all functions
of the form f(x1, . . . , xn) = xi for some 1 ≤ i ≤ n), or else s-Pol(Γ) contains the dual discriminator
operation, d, or the near-projection operation, l|D|, or (when |D| ∈ {3, 4}) an affine operation.
If s-Pol(Γ) consists of all projections then, by Theorem 5.2, QCSP(Γ) is PSPACE-complete. If
s-Pol(Γ) contains d or an affine operation then, by Theorem 4.2 or Theorem 4.5, QCSP(Γ) is in
PTIME.

28

Suppose that s-Pol(Γ) contains l|D|, but neither d nor the affine operation. Then, by Proposi-
tion 7.1, QCSP(Γ) is in NP. Note that s is a Mal’tsev operation, and, hence, if s-Pol(Γ) contains
s then QCSP(Γ) is solvable in polynomial time by Theorem 4.2. If s-Pol(Γ) contains none of s, d,
and the affine operation then, by Theorem 12 of [23], CSP(Γ) is NP-complete. Since, obviously,
CSP(Γ) is polynomial-time reducible to QCSP(Γ), and QCSP(Γ) is in NP, the result follows.

Note that, for any fixed finite set D, the conditions in Theorem 7.4 can be efficiently checked.

8 Conclusions

We have shown that the algebraic theory relating complexity and polymorphisms, which was orig-
inally developed for the standard constraint satisfaction problem allowing only existential quan-
tifiers, can be extended to deal with the more general framework of the quantified constraint
satisfaction problem.

In this extension of the theory it turns out that it is the surjective polymorphisms of the
predicates used in problem instances which determine the complexity of the corresponding problems.
Using this information we have been able to identify subproblems of the quantified constraint
satisfaction problem lying in (or complete for) some standard complexity classes.

As an example of using these results, we now classify the complexity of the constraint satisfaction
games described in Examples 2.7 to 2.10.

Corollary 8.1

(1) The Graph k-Colouring Game described in Example 2.7 can be decided in polynomial
time when k ≤ 2 and is PSPACE-complete when k ≥ 3.

(2) The One-Or-Both Colour Matching Game described in Example 2.8 can be decided in
polynomial time.

(3) The Colour Implication Game described in Example 2.9 can be decided in polynomial
time.

(4) The Linear Equations Game described in Example 2.10 can be decided in polynomial time.

Proof:

(1) Follows immediately from Corollary 3.9 and Proposition 5.1.

(2) It is straightforward to verify that each relation in Γcm defined in Example 2.8 is invariant
under the dual discriminator operation, which is a near unanimity operation. Hence, by
Theorem 4.5, the One-Or-Both Colour Matching Game can be decided in polynomial
time.

(3) The Colour Implication Game defined in Example 2.9 involves a set D of colours con-
taining two distinguished colours, black and white. Consider the binary operation ∗ on D
such that, for all v ∈ D, we have v ∗ v = v ∗ black = black ∗ v = v, and, for any distinct
u, v ∈ D \ {black}, we have u ∗ v = white. It is easy to check that ∗ is a semilattice operation
where the black colour is a unit element. The corresponding lattice order ≤∗ is a so-called
“diamond” order: it has black as the least element, white as the greatest element, and all
other colours incomparable with each other. It is straightforward to verify that each of the

29

relations %a,b defined in Example 2.9 is equal to the set {(u, v) | (u 6≤∗ a) ∨ (v ≤∗ b)}. Hence,
by Lemma 6.2, the set of relations Γci is invariant under the operation ∗. The result then
follows from Theorem 6.1.

(4) It is straightforward to verify that each relation in Γlin defined in Example 2.10 is invariant
under the affine operation of the field K. Hence, by Theorem 4.2, the Linear Equations
Game can be decided in polynomial time.

References

[1] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear time algorithm for testing the truth of
certain quantified Boolean formulas. Information Processing Letters, 8:121–123, 1979.

[2] H.L. Bodlaender. On the complexity of some coloring games. International Journal of Foun-
dations of Computer Science, 2(2):133–147, 1991.

[3] L. Bordeaux and E. Monfroy. Beyond NP: Arc-consistency for quantified constraints. In
Proceedings of CP’02, volume 2470 of LNCS, pages 371–386, 2002.

[4] F. Börner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantified constraints: Algorithms and
complexity. In Proceedings of CSL’03, volume 2803 of LNCS, pages 58–70, 2003.

[5] F. Börner, A. Krokhin, A. Bulatov, and P. Jeavons. Quantified constraints and surjective poly-
morphisms. Technical Report PRG-RR-02-11, Computing Laboratory, University of Oxford,
UK, 2002.

[6] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
Journal of the ACM, 53(1):66-120, 2006.

[7] A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of LICS’03,
pages 321–330, 2003.

[8] A. Bulatov. A graph of a relational structure and constraint satisfaction problems. In Pro-
ceedings of LICS’04, pages 448–457, 2004.

[9] A. Bulatov. Combinatorial problems raised from 2-semilattices. Journal of Algebra, 298(2):321-
339, 2006.

[10] A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM Journal on
Computing, 36(1):16-27, 2006.

[11] A. Bulatov and P. Jeavons. An algebraic approach to multi-sorted constraints. In Proceedings
of CP’03, volume 2833 of LNCS, pages 183–198, 2003.

[12] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using finite
algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

[13] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An algorithm to evaluate quantified
Boolean formulae and its experimental evaluation. Journal of Automated Reasoning, 28(2):101–
142, 2002.

30

[14] H. Chen. Collapsibility and consistency in quantified constraint satisfaction. In Proceedings of
AAAI’04, pages 155–160, 2004.

[15] H. Chen. The Computational Complexity of Quantified Constraint Satisfaction. PhD thesis,
Cornell University, 2004.

[16] H. Chen. Quantified constraint satisfaction and 2-semilattice polymorphisms. In Proceedings
of CP’04, volume 3258 of LNCS, pages 168–181, 2004.

[17] H. Chen. Quantified constraint satisfaction, maximal constraint languages, and symmetric
polymorphisms. In Proceedings of STACS’05, volume 3404 of LNCS, pages 315–326, 2005.

[18] H. Chen. The complexity of quantified constraint satisfaction: collapsibility, sink algebras,
and the three-tlement case. SIAM Journal on Computing, 37(5):1674–1701, 2008.

[19] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint Sat-
isfaction Problems, volume 7 of SIAM Monographs on Discrete Mathematics and Applications.
2001.

[20] V. Dalmau. Some dichotomy theorems on constant-free quantified Boolean formulas. Technical
Report TR LSI-97-43-R, Department LSI, Universitat Politecnica de Catalunya, 1997.

[21] V. Dalmau. Constraint satisfaction problems in non-deterministic logarithmic space. In Pro-
ceedings of ICALP’02, volume 2380 of LNCS, pages 414–425, 2002.

[22] V. Dalmau. Generalized majority-minority operations are tractable. In Proceedings of LICS’05,
pages 438–447, 2005.

[23] V. Dalmau. A new tractable class of constraint satisfaction problems. Annals of Mathematics
and Artificial Intelligence, 44(1-2):61–85, 2005.

[24] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[25] U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving advanced reasoning tasks using quan-
tified Boolean formulas. In Proceedings of AAAI’00, pages 417–422, 2000.

[26] T. Feder and Ph.G. Kolaitis. Closures and dichotomies for quantified constraints. Electronic
Colloquium on Computational Complexity, Report TR06-160, 2006.

[27] T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP and con-
straint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing,
28:57–104, 1998.

[28] A.S. Fraenkel. Combinatorial games. Electronic Journal of Combinatorics, 2003. Dynamic
Survey DS2.

[29] A.S. Fraenkel. Complexity, appeal and challenges of combinatorial games. Theoretical Com-
puter Science, 313(3):393–415, 2004.

[30] M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, CA., 1979.

[31] I.A. Gent, P. Nightingale, and K. Stergiou. QCSP-solve: A solver for quantified constraint
satisfaction problems. In Proceedings of IJCAI’05, pages 138–143, 2005.

31

[32] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for quantified Boolean logic
satisfiability. Artificial Intelligence, 145(1-2):99–120, 2003.

[33] A. Horn. On sentences which are true of direct unions of algebras. Journal of Symbolic Logic,
16(1):14–21, 1951.

[34] P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185–204, 1998.

[35] P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constraints, consistency and closure. Artificial
Intelligence, 101(1-2):251–265, 1998.

[36] P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the
ACM, 44:527–548, 1997.

[37] H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified Boolean formulas.
Information and Computation, 117(1):12–18, 1995.

[38] Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint satisfaction.
Journal of Computer and System Sciences, 61:302–332, 2000.

[39] Ph.G. Kolaitis and M.Y. Vardi. A game-theoretic approach to constraint satisfaction. In
Proceedings of AAAI’00, pages 175–181, 2000.

[40] A. Krokhin, A. Bulatov, and P. Jeavons. The complexity of constraint satisfaction: an algebraic
approach. In Structural Theory of Automata, Semigroups, and Universal Algebra, volume 207
of NATO Science Series II: Math., Phys., Chem., pages 181–213. Springer Verlag, 2005.

[41] N. Mamoulis and K. Stergiou. Algorithms for quantified constraint satisfaction problems. In
Proceedings of CP’04, volume 3258 of LNCS, pages 752–756, 2004.

[42] B. Martin and F. Madeleine. Towards a trichotomy for quantified H-coloring . In Proceedings
of CiE’06, volume 3988 of LNCS, pages 342–352, 2006.

[43] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[44] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge, 1997.

[45] R. Pöschel and L.A. Kalužnin. Funktionen- und Relationenalgebren. DVW, Berlin, 1979.

[46] E.L. Post. The two-valued iterative systems of mathematical logic, volume 5 of Annals Math-
ematical Studies. Princeton University Press, 1941.

[47] O. Reingold. Undirected ST-connectivity in log-space. In Proceedings of STOC’05, pages
376–385, 2005.

[48] J. Rintanen. Constructing conditional plans by a theorem-prover. Journal of Artificial Intel-
ligence Research, 10:323–352, 1999.

[49] M. Rychlik. On probabilistic quantified satisfiability games. In Proceedings of MFCS’03,
volume 2747 of LNCS, pages 652–661, 2003.

[50] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC’78, pages
216–226, 1978.

32

[51] T.J. Schaefer. On the complexity of some two-person perfect-information games. Journal of
Computer and System Sciences, 16(2):185–225, 1978.

[52] A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de Mathematiques Su-
perieures. University of Montreal, 1986.

[53] R. Williams. Algorithms for quantified Boolean formulas. In Proceedings of SODA’02, pages
299–307, 2002.

33

